精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\left\{\begin{array}{l}{2x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,则b=(  )
A.-1B.-$\frac{2}{3}$C.-1或-$\frac{2}{3}$D.2

分析 利用分段函数列出方程求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{2x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,
若f(f($\frac{1}{2}$))=4,
可得4=f(1-b),
当1-b<1,即b>0时,2(1-b)-b=4,解得b=-$\frac{2}{3}$,(舍去).
当1-b≥1,即b≤0时,21-b=4,解得b=-1,
故选:A.

点评 本题看看菜分段函数的应用,分类讨论思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{b_n}{2^n}={a_n}+{n^2}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn=$\frac{4}{3}$an-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$,求an及Tn=$\sum_{k=1}^{n}\frac{{2}^{k}}{{S}_{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{\sqrt{1-x}}$的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=(-1,1);M∪N=R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{cx-1}{x+1}$(c为常数),且f(1)=0.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若集合M={-1,0,1},N={x|x=coskπ,k∈Z},则∁MN=(  )
A.B.0C.{0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.幂函数y=f(x)的图象经过点(9,3),则此幂函数的解析式为f(x)=$\sqrt{x}$,x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设圆C:x2+y2=5上一点P(a,$\sqrt{3a-5}$),则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在三棱锥A-BCD中,AB=CD,且点M,N分别是BC,AD的中点.
(1)若直线AB与CD所成的角为60°,则直线AB和MN所成的角为60°.
(2)若直线AB⊥CD,则直线AB与MN所成的角为45.

查看答案和解析>>

同步练习册答案