【题目】如图,在多面体中, 平面,直线与平面所成的角为30°,为的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.
【答案】(1)见解析(2)60°
【解析】分析:
(Ⅰ)由BD⊥平面ABC得BD⊥AC,上AC⊥AB,得AC⊥平面ABDE,从而知∠CDA是直线CD与平面ABDE所成的角为30°,这样可求得AC与BC的关系从而确定是等腰直角三角形,于是取BC中点为O,有AO⊥BC,因此可证AO⊥平面CBD,又可证AOME是平行四边形,即得AO//EM,于是有EM⊥平面BCD,最终可证得面面垂直;
(Ⅱ) 以为原点,建立空间直角坐标系如图所示,不妨设,写出各点坐标,然后求出平面BCE和平面BEM的法向量,利用向量法可求得二面角.
详解:
(Ⅰ)连接,取的中点为,连接.
因为平面平面,所以,
又,所以平面,
则为直线与平面所成的角,即.
所以,
所以是等腰直角三角形,则,
又平面,所以,所以平面.
又分别是的中点,所以又,所以 ,
故四边形是平行四边形,所以,
所以平面,又平面,所以平面平面.
(Ⅱ)以为原点,建立空间直角坐标系如图所示,不妨设,
则,
所以.
设平面 的法向量为,则,即,解得,
令,得;
设平面的法向量为,则,即,解得,
令,得;
所以,
所以二面角的大小为60°.
科目:高中数学 来源: 题型:
【题目】学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128 dm2,上、下两边各空2 dm,左、右两边各空1 dm.如何设计海报的尺寸,才能使四周空白面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形中,,,为的中点,为中点.将沿折起到,使得平面平面(如图2).
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在点,使得平面? 若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形中,,,,,为中点.将沿翻折到的位置, 使如图2.
(1)求证:平面 平面;
(2)求与平面所成角的正弦值;
(3)设、分别为和的中点,试比较三棱锥和三棱锥(图中未画出)的体积大小,并说明理由.
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程是(为参数),曲线的参数方程是(为参数).
(Ⅰ)将曲线,的参数方程化为普通方程;
(Ⅱ)求曲线上的点到曲线的距离的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)对任意的m,n∈R都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题 : 表示双曲线,命题 : 表示椭圆。
(1)若命题与命题 都为真命题,则 是 的什么条件?
(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)
(2)若 为假命题,且 为真命题,求实数 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com