精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,a∈R.
(I)若函数f(x)在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$,求ω的值;
(Ⅱ)在(I)的条件下,若f(x)在区间[-$\frac{π}{3}$,$\frac{5π}{6}$]上的最小值为$\frac{\sqrt{3}+1}{2}$,求实数a的值;
(Ⅲ)若函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,求实数ω的取值范围.

分析 (I)由题意可得2ω•$\frac{π}{6}$+$\frac{π}{3}$=$\frac{π}{2}$,求得ω的值.
(Ⅱ)在(I)的条件下,x+$\frac{π}{3}$∈[0,$\frac{7π}{6}$],可得函数的最小值为-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$+a=$\frac{\sqrt{3}+1}{2}$,由此可得a的值.
(Ⅲ)由函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,可得$\left\{\begin{array}{l}{-\frac{π}{2}≤2ω•(-\frac{π}{4})+\frac{π}{3}}\\{2ω•\frac{π}{2}+\frac{π}{3}≤\frac{π}{2}}\end{array}\right.$,由此求得ω 的范围.

解答 解:(I)∵函数f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,其中,ω>0,
函数f(x)在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$,∴2ω•$\frac{π}{6}$+$\frac{π}{3}$=$\frac{π}{2}$,求得ω=$\frac{1}{2}$.
(Ⅱ)在(I)的条件下,f(x)=sin(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$+a,
 在区间[-$\frac{π}{3}$,$\frac{5π}{6}$]上,x+$\frac{π}{3}$∈[0,$\frac{7π}{6}$],故函数的最小值为-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$+a=$\frac{\sqrt{3}+1}{2}$,∴a=1.
(Ⅲ)若函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{2}$]上单调递增,则$\left\{\begin{array}{l}{-\frac{π}{2}≤2ω•(-\frac{π}{4})+\frac{π}{3}}\\{2ω•\frac{π}{2}+\frac{π}{3}≤\frac{π}{2}}\end{array}\right.$,
求得ω≤$\frac{1}{6}$.

点评 本题主要考查正弦函数的图象特征,正弦函数的定义域和值域,正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{lnx,x>1}\\{{e}^{x},x≤1}\end{array}\right.$,则使得f(x)<1成立的x的取值范围是(-∞,0)∪(1,e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知各项都为正数的数列{an}满足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$,且64a10-a4=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=|lnx|中,f(m)=f(n)且m<n,则log2$\sqrt{m}$+log4n=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知实数x,y满足$\frac{x}{1+i}$+$\frac{y}{1-i}$=$\frac{5}{1-2i}$,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,D是BC的中点,AD平分∠BAC,若AB=3,AC=1,∠BAC=60°,则AD=$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点为F1、F2,以线段F1F2为边作正三角形MF1F2,若MF1的中点在双曲线上,则$\frac{{b}^{2}}{{a}^{2}}$=(  )
A.$\sqrt{3}$-1B.$\sqrt{3}$+1C.3+2$\sqrt{3}$D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.记$\sum_{i=1}^{n}$ai=a1+a2+…+an,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an,设关于实数x的函数fn(x)=$\frac{nx-n}{\underset{\stackrel{n}{π}}{i=1}[ix-(i-1)]}$(n∈N*)满足$\sum_{i=1}^{2015}$fi(x)<1,则x可取的值为(  )
A.-$\frac{1}{2}$B.$\frac{7}{12}$C.$\frac{31}{40}$D.$\frac{49}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=\sqrt{{{log}_{\frac{2}{3}}}(2x-1)}$的定义域是($\frac{1}{2}$,1].

查看答案和解析>>

同步练习册答案