精英家教网 > 高中数学 > 题目详情
3.若3x<1,则x的取值范围是(  )
A.(-1,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)

分析 不等式化为3x<30,利用函数单调性解出.

解答 解:3x<1?3x<30
∵y=3x是增函数,
∴3x<30的解是x<0.
故选D.

点评 本题考查了指数不等式的解法,将两侧式子化成同底的指数式是常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知f(x)是定义在R上的偶函数,并满足f(x+2)=$\frac{1}{f(x)}$,当2≤x≤3,f(x)=x,则f(25.5)等于(  )
A.-5.5B.-2.5C.2.5D.5.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用分析法、综合法证明:若a>0,b>0,a≠b,则$\frac{a+b}{2}$>$\sqrt{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的奇函数,当x<0时,$f(x)=\frac{{{a^x}-1}}{a^x}$,其中a>0且a≠1.
(1)求f(x)的解析式;
(2)解关于x的不等式-1<f(x-1)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三个不等式:(1)x2-2x-3<0;(2)$\frac{x-2}{x-4}<0$;(3)x2-(a+$\frac{1}{a}$)x+1<0(a>0).若同时满足(1)(2)的x也满足(3).求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(2x+1)定义域为(3,5),则f(x)定义域为(7,11).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x∈(0,+∞),观察下列各式:
x+$\frac{1}{x}$≥2,
x+$\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3,
x+$\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}$≥4,

类比得:x+$\frac{a}{x^n}≥n+1(n∈{N^*})$,则a=nn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)对于任意的x∈R恒有f(x)<f(x+1),那么(  )
A.f(x)是R上的增函数B.f(x)可能不存在单调的增区间
C.f(x)不可能有单调减区间D.f(x)一定有单调增区间

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=ax-a-x(a>0且a≠1)是(  )
A.偶函数B.奇函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

同步练习册答案