精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设为成活沙柳的株数,数学期望,标准差
(Ⅰ)求n,p的值并写出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率

(Ⅰ)

0
1
2
3
4
5
6








(Ⅱ)、 或
(1)由,从而
的分布列为

0
1
2
3
4
5
6








(2)记”需要补种沙柳”为事件A,  则 得
 或
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某射击测试规则为:每人最多射击3次,击中目标即终止射击,第次击中目标得分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某一射手射击所得的环数ξ的分布列如下:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
求此射手“射击一次命中环数≥7”的概率__________________________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一袋中装有5个白球,3个红球,现从袋中往外取球,每次任取一个,取出后记下颜色,若为红色停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为备战2012奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取8次,记录如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)画出甲、乙两位选手成绩的茎叶图;(用茎表示成绩的整数部分,用叶表示成绩的小数部分)
(2)现要从中选派一人参加奥运会,从平均成绩和发挥稳定性角度考虑,你认为派哪位选手参加合理?简单说明理由.
(3)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于8.5分的次数为ξ,求ξ的分布列及均值Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
2
3
,中奖可以获得2分;方案乙的中奖率为
2
5
,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.
(1)写出甲总得分ξ的分布列;
(2)求甲总得分ξ的期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·济南模拟]现有10张奖券,8张2元的,2张5元的,某人从中随机地、无放回地抽取3张,则此人得奖金额的数学期望是(  )
A.6B.7.8C.9D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

采用简单随机抽样,从含有8个个体的总体中抽取一个容量为4的样本,个体a前三次未被抽到,第四次被抽到的概率为               

查看答案和解析>>

同步练习册答案