精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:
①A1C⊥平面B1EF;
②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
③在平面A1B1C1D1内总存在与平面B1EF平行的直线.
其中正确结论的序号为
②③
②③
(写出所有正确结论的序号).
分析:①找出A1C所垂直的平面的位置,进而可知EF为其它位置时不垂直;
②先作出其正投影,即可判断出结论;
③利用线面、面面平行的判定和性质定理即可得出.
解答:解:①知道当点E与D1重合、点F与A重合时,A1C⊥平面AB1D1(即平面B1EF),而EF为其它位置时不垂直,故不正确;
②如图所示,EF在侧面BCC1B1上的正投影为BE1,则△BB1E1的面积=
1
2
S正方形BCC1B1
,为定值,因此正确;
③如图2所示,在边B1B上取B1M=D1E,连接EM;在平面ABB1A1内作MN∥AB交B1F于N点,连接EN,则EN∥平面A1B1C1D1
综上可知:只有②③正确.
故答案为②③.
点评:熟练掌握线面、面面平行与垂直的判定定理和性质定理及正投影是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案