精英家教网 > 高中数学 > 题目详情
6.与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点P(2,1)的双曲线方程是(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.$\frac{{x}^{2}}{2}$-y2=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1D.x2-3y2=1

分析 求出椭圆的焦点坐标,设出双曲线方程,求解即可.

解答 解:椭圆$\frac{{x}^{2}}{4}$+y2=1的焦点坐标($±\sqrt{3}$,0),
设双曲线方程为:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{3-{a}^{2}}=1$,
双曲线经过点P(2,1),
可得$\frac{4}{{a}^{2}}-\frac{1}{3-{a}^{2}}=1$,解得a=$\sqrt{2}$,
所求双曲线方程为:$\frac{{x}^{2}}{2}$-y2=1.
故选:B.

点评 本题考查椭圆的简单性质以及双曲线的简单性质双曲线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.为了解甲、乙两校高二年级学生某次联考物理成绩情况,从这两学校中分别随机抽取30名高二年级的物理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若甲校高二年级每位学生被抽取的概率为0.15,求甲校高二年级学生总人数;
(2)根据茎叶图,对甲、乙两校高二年级学生的物理成绩进行比较,写出两个统计结论(不要求计算);
(3)从样本中甲、乙两校高二年级学生物理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6位选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图.为了增加结果的神秘感,主持人暂时没有公布甲、乙两班最好一位选手的成绩.
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.请你从平均分和方差的角度来分析两个班的选手的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个学校共有2000名学生,含初一、初二、初三、高一、高二、高三六个年级,要采用分层抽样方法从全部学生中抽取一个容量为50的样本,已知高一有600名学生,那么从高一年级抽取的学生人数是15人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=ax(a>0,a≠1)在区间[1,2]上的最大值和最小值之和为6,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.△ABC的面积是$\frac{1}{2}$,∠B是钝角,AB=1,BC=$\sqrt{2}$,则AC=(  )
A.5B.2C.$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两个命题p:?x∈R,sinx+cosx>m恒成立,q:?x∈R,y=(2m2-m)x为增函数.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,两个顶点分别为A(-a,0),B(a,0),点M(-1,0),且3$\overrightarrow{AM}$=$\overrightarrow{MB}$,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,且点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线BC,BD的斜率分别为k1,k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法中,正确的是(  )
A.经过不同的三点有且只有一个平面
B.分别在两个平面内的两条直线是异面直线
C.垂直于同一个平面的两条直线平行
D.垂直于同一个平面的两个平面平行

查看答案和解析>>

同步练习册答案