精英家教网 > 高中数学 > 题目详情

【题目】为了调查某社区中学生的课外活动,对该社区的100名中学生进行了调研,随机抽取了若干名,年龄全部介于1318之间,将年龄按如下方式分成五组:第一组第二组第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三个组的频率之比为且第二组的频数为4.

1试估计这100名中学生中年龄在内的人数;

2求调研中随机抽取的人数.

【答案】(1)32.(2)25名.

【解析】试题分析:(1)由题意知,年龄在[16,17]内的频率为0.32×1=0.32,由此能估计该年级学生中年龄在[16,17)内的人数.
(2)设图中从左到右前三组的频率分别为,依题意得,由此能求出调查中共随机抽取了多少个学生的百米成绩.

试题解析:(1)年龄在内的频率为

所以估计这100名学生中年龄在内的人数为32.

(2)设图中从左到右前三个组的频率分别为

依题意得,所以

设调研中随机抽取了名学生,则,所以

所以调研中随机抽取了25名学生.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=)且与点A相距10海里的位置C.

(I)求该船的行驶速度(单位:海里/小时);

(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)判断的奇偶性并予以证明;

(2)时,求使的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,a1=1,前n项和为Sn , 且an+12﹣nλ2﹣1=2λSn , λ为正常数.
(1)求数列{an}的通项公式;
(2)记bn= ,Cn= + (k,n∈N*,k≥2n+2). 求证:
①bn<bn+1
②Cn>Cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设abc是正整数,且a∈[70,80),b∈[80,90),c∈[90,100],当数据abc的方差最小时,a+b+c的值为( )
A.252或253
B.253或254
C.254或255
D.267或268

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.
(Ⅰ)证明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D﹣AE﹣C为60°,AA1=AB=1,求三棱锥C﹣AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:在定义域内存在实数,使得成立,则称函数为“的饱和函数”.给出下列四个函数:①;②; ③;④.其中是“的饱和函数”的所有函数的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(6﹣m)﹣f(m)﹣18+6m≥0,则实数m的取值范围为(
A.[﹣3,3]
B.[3,+∞)
C.[2,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是 以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A,B两点.
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA||MB|的值.

查看答案和解析>>

同步练习册答案