精英家教网 > 高中数学 > 题目详情

(本小题满分16分)

已知数列{an}的通项公式为an = (nÎN*).

⑴求数列{an}的最大项;

⑵设bn = ,试确定实常数p,使得{bn}为等比数列;

⑶设,问:数列{an}中是否存在三项,使数列是等差数列?如果存在,求出这三项;如果不存在,说明理由.

解 ⑴由题意an = 2 + ,随着n的增大而减小,所以{an}中的最大项为a1 = 4.…4分

bn =  =  = ,若{bn}为等比数列,

bbnbn+2= 0(nÎN* )所以 [(2 + p)3n+1 + ( 2 – p)]2 – [{2 + p)3n + (2 – p)][(2 + p)3n+2 + (2 – p)] = 0(nÎN*)

化简得(4 – p2)(2·3n+1 – 3n+2 – 3n ) = 0– (4 – p2)·3n·4 = 0,解得p = ±2. ………………………7分

反之,p = 2,bn = 3n,{bn}是等比数列;p = – 2,bn = 1,{bn}也是等比数列.所以,当且仅当p = ±2{bn}为等比数列. ………………………………………………………………10分

⑶因为,若存在三项,使数列是等差数列,则,所以=,……………12分

化简得(*),因为,所以,所以,(*)的

左边

右边,所以(*)式不可能成立,

故数列{an}中不存在三项,使数列是等差数列. ……………16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010江苏卷)18、(本小题满分16分)

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

查看答案和解析>>

科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题

(本小题满分16分)
函数(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,对任意时,恒成立,求实数的范围;
(Ⅲ)如果,当“对任意恒成立”与“内必有解”同时成立时,求 的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题

(本小题满分16分)     本题请注意换算单位

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。

(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;

(总开发费用=总建筑费用+购地费用)

(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)设命题:方程无实数根; 命题:函数

的值域是.如果命题为真命题,为假命题,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题

(本小题满分16分)

已知函数f(x)=为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

(Ⅰ)求f)的值;

(Ⅱ)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.

 

查看答案和解析>>

同步练习册答案