精英家教网 > 高中数学 > 题目详情
11.已知全集U=R,集合A={x|x-a≤0},B={x|x2-3x+2≤0},且A∪∁UB=R,则实数a的取值范围是a≥2.

分析 由全集R及B,求出B的补集,根据A与B补集的并集为R,确定出a的范围即可.

解答 解:∵全集U=R,B={x|x2-3x+2≤0}={x|1≤x≤2},
∴∁UB={x|x<1或x>2}.
∵A={x|x-a≤0}={x|x≤a},A∪(∁UB)=R,
∴a≥2,
则a的取值范围为a≥2.
故答案为:a≥2.

点评 本题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知以点C(2,-1)为圆心的圆与直线l:mx+2y+2m+4=0相切,则当圆C半径最大时圆C的方程为(  )
A.x2+y2-4x+2y-12=0B.x2+y2-4x+2y-16=0
C.x2+y2-4x+2y-8=0D.x2+y2+4x-2y-10=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,一条准线方程为x=2.过椭圆的上顶点A作一条与x轴、y轴都不垂直的直线交椭圆于另一点P,P关于x轴的对称点为Q.
(1)求椭圆的方程;
(2)若直线AP,AQ与x轴交点的横坐标分别为m,n,求证:mn为常数,并求出此常数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=$si{n^2}\frac{x}{2}$,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数$f(x)=\frac{x}{(x-2)(x+a)}$是奇函数,则a=(  )
A.-2B.2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+2x|x-a|,其中a∈R.
(Ⅰ)当a=-1时,在所给坐标系中作出f(x)的图象;
(Ⅱ)对任意x∈[1,2],函数f(x)的图象恒在函数g(x)=-x+14图象的下方,求实数a的取值范围;
(Ⅲ)若关于x的方程f(x)+1=0在区间(-1,0)内有两个相异根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}-ax-7,(x≤1)\\ \frac{a}{x}(x>1)\end{array}\right.$是R上的增函数,则a的取值范围是(  )
A.-4≤a<0B.a≤-2C.-4≤a≤-2D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域:
(1)y=$\frac{\sqrt{x-2}}{x+1}$•$\sqrt{x+5}$;      
(2)y=$\frac{\sqrt{x-3}}{|x|-5}$.

查看答案和解析>>

同步练习册答案