精英家教网 > 高中数学 > 题目详情

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

1)求函数的单调区间;

2)若关于的不等式在(0,+)上恒成立,求实数的取值范围.

【答案】1)单调递减区间是,单调递增区间是;2

【解析】试题分析1)由函数的解析式得其定义域为.. 因为曲线在点处的切线方程为,所以,,联立可得解方程组可得. 所以 .分别解不等式可得单调递减与递增区间2)不等式恒成立即不等式恒成立,构造函数,因为,所以对任意,不等式恒成立.考虑函数的单调性。因为。当时,对任意恒成立,此时函数单调递增.于是,不等式对任意恒成立,不符合题意;当函数为减函数时, ,即恒成立时,函数单调递减,构造函数 大于函数的最大值,求导数判断单调性,对任意所以,即,符合题意;当时,构造函数,二次求导,令 ,因为,所以。所以当时, ,此时单调递增,所以 ,故当时,函数单调递增.于是当时, 成立,不符合题意;综合上面三种情况可得所求。

试题解析:解:(1)函数的定义域为.

.

依题意得 ,即

所以.

所以 .

时, ;当时, .

所以函数的单调递减区间是,单调递增区间是.

2)设函数,故对任意,不等式恒成立.

,当,即恒成立时,

函数单调递减,设,则

所以,即,符合题意;

时, 恒成立,此时函数单调递增.

于是,不等式对任意恒成立,不符合题意;

时,设

时, ,此时单调递增,

所以

故当时,函数单调递增.

于是当时, 成立,不符合题意;

综上所述,实数的取值范围为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).

(1)求证:无论m取什么实数,直线l恒过第一象限;
(2)求直线l被圆C截得的弦长最短时m的值以及最短长度;
(3)设直线l与圆C相交于A、B两点,求AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=BB1=1,B1C=2.

(1)求证:平面B1AC⊥平面ABB1A1
(2)求直线A1C与平面B1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴上的圆与直线切于点.

(1)求圆的标准方程;

(2)已知,经过原点,且斜率为正数的直线与圆交于两点.

(ⅰ)求证: 为定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不共线的向量满足 .

1)若垂直,求的值;

2)当时,若存在两个不同的使得成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为(1,1)的圆C经过点M(1,2).
(1)求圆C的方程;
(2)若直线x+y+m=0与圆C交于A、B两点,且△ABC是直角三角形,求实数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣4ax+b(a>0)在区间[0,1]上有最大值1和最小值﹣2.
(1)求a,b的值;
(2)若不等式f(x)≥mx在x∈(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案