精英家教网 > 高中数学 > 题目详情

设x1,x2(x1≠x2)使函数f(x)=ax3+bx2-a2x(a>0)的两个极值点
(1)若数学公式,求b的最大值; 
(2)若x1<x<x2,且x2=a,函数g(x)=f(x)'-a(x-x1),求证:数学公式

解:(1)∵函数f(x)=ax3+bx2-a2x(a>0)
∴函数f(x)的导数为f′(x)=3ax2+2bx-a2
∵x1,x2(x1≠x2)是函数的两个极值点
∴x1,x2是方程f′(x)=0的两个不相等的实数根,得
∵两根x1,x2之积为
∴两根x1,x2之中一正一负,可得
平方,得(x1-x22=(x1+x22-4x1•x2=8
即:
整理,得4b2=72a2-12a3,其中a>0
∴b2=18a2-3a3
记F(a)=18a2-3a3,得F′(a)=36a-9a2=9a(4-a)
令F′(a)>0,得0<a<4,F′(a)<0,得a>4,
∴F(a)在区间(0,4)上为增函数,在区间(4,+∞)上为减函数
可得F(a)在(0,+∞)上的最大值为F(4)=96
∴b的最大值为=
(2)由(1)的根与系数的关系,结合x2=a,得
?
∴f'(x)=3ax2+2bx-a2=3ax2+(-3a2+a)x-a2
∴g(x)=f'(x)-a(x-x1)=3ax2+(-3a2+a)x-a2-a(x+
=3ax2-3a2x-a2-a=(x+)(3ax-3a2-a)
g(x)的图象是开口向上的抛物线,关于直线x=对称
它的两个零点为-,且-
∵x1<x<x2即x∈(-,a),a
∴g(x)<0且g(x)的最小值为g()=
∴不等式恒成立.
分析:(1)对函数f(x)求导数,得到导数f′(x)是关于x的二次函数.根据x1,x2(x1≠x2)是函数f(x)的两个极值点,得到x1,x2是方程f′(x)=0的两个不相等的实数根,然后利用根与系数的关系,建立方程组,并由这个方程组消去x1,x2得到关于a、b的关系式,通过这个关系式可得b关于a的函数表达式,从而得到b的最大值;
(2)用(1)中根与系数关系表达式,结合x2=a,解得,且2b-3a2+a.由此代入g(x)=f(x)'-a(x-
x1),得到g(x)的表达式是一个二次函数,它的图象是开口向上的抛物线,它的两个零点为-,且-.因为x1<x<x2,所以g(x)的定义域为∈(-,a)?(-),得到g(x)的值恒为负数.并且g(x)的最小值等于二次函数对称轴处的取值:g()=,从而证出原不等式恒成立.
点评:本题着重考查函数在某点取得极值的条件、利用导数求闭区间上函数的最值等知识点,属于难题.在解题过程中还用到了二次函数的图象与性质、一元二次方程根与系数的关系和函数的值域等解题方法,是一道综合性较强的题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+c(a>0),且f(1)=-
a2

(1)求证:函数f(x)有两个零点.
(2)设x1,x2是函数f(x)的两个零点,求|x1-x2|的范围.
(3)求证:函数f(x)的零点x1,x2至少有一个在区间(0,2)内.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x1,x2为y=f(x)的定义域内的任意两个变量,有以下几个命题:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
f(x1)-f(x2)
x1-x2
>0;
f(x1)-f(x2)
x1-x2
<0.
其中能推出函数y=f(x)为增函数的命题为
①③
①③

查看答案和解析>>

科目:高中数学 来源:广东省2007年五校联考调研数学试卷(理科)-苏教版 题型:044

设x1,x2的两个极值点,f(x)的导函数是

(1)如果x1<2<x2<4,求证:

(2)如果|x1|<2,|x2-x1|=2,求b的取值范围;

(3)如果a≥2,且x2-x1=2,x∈(x1,x2)时,函数的最小值为h(a),求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=-x-x3,设x1+x2≤0,给出下列不等式,其中正确不等式的序号是(   )

f(x1)f(-x1)≤0       ②f(x2)f(-x2)>0       ③f(x1)+f(x2)≤f(-x1)+f(-x2)④f(x1)+f(x2)≥f(-x1)+f(-x2)

A.①③                  B.①④                  C.②③                  D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设x1,x2为y=f(x)的定义域内的任意两个变量,有以下几个命题:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
f(x1)-f(x2)
x1-x2
>0;
f(x1)-f(x2)
x1-x2
<0.
其中能推出函数y=f(x)为增函数的命题为______.

查看答案和解析>>

同步练习册答案