已知椭圆C:=1(a>b>0)的离心率为
,短轴一个端点到右焦点的距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
科目:高中数学 来源: 题型:解答题
(本小题14分)
已知椭圆(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线
与椭圆相交于
两点,且
为锐角(其中
为坐标原点),求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,点
,点
为抛物线
的焦点,
线段恰被抛物线
平分.
(Ⅰ)求的值;
(Ⅱ)过点作直线
交抛物线
于
两点,设直线
、
、
的斜率分别为
、
、
,问
能否成公差不为零的等差数列?若能,求直线
的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆(
)过点
(0,2),离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线
与椭圆相交于
两点,且
为锐角(其中
为坐标原点),求直线
斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)已知函数(其中
且
为常数)的图像经过点A
、B
.
是函数
图像上的点,
是
正半轴上的点.
(1) 求的解析式;
(2) 设为坐标原点,
是一系列正三角形,记它们的边长是
,求数列
的通项公式;
(3) 在(2)的条件下,数列满足
,记
的前
项和为
,证明:
。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题15分)已知点是椭圆E:
(
)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,(
).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题14分)抛物线与直线
相交于
两点,且
(1)求的值。
(2)在抛物线上是否存在点
,使得
的重心恰为抛物线
的焦点
,若存在,求点
的坐标,若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com