精英家教网 > 高中数学 > 题目详情
已知向量
a
b
的夹角为60°,|
a
|=2,|
b
|=1,且(k
a
+
b
)⊥(2
a
-
b
),则实数k=
 
分析:由两向量垂直其数量积为零,可得k的方程,解之即可.
解答:解:因为(k
a
+
b
)
(2
a
-
b
)

所以(k
a
+
b
)
(2
a
-
b
)
=0,即2k
a
2
+(2-k)
a
b
-
b
2
=0,
所以2k×4+(2-k)×2cos60°-1=0,
解得k=-
1
7

故答案为-
1
7
点评:本题考查向量垂直的等价条件及向量数量积的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为
π
3
,|
a
|=
2
,则
a
b
方向上的投影为(  )
A、
3
B、
2
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为45°,且|
a
|=4,(
1
2
a
+
b
)•(2
a
-3
b
)=12,则|
b
|=
 
b
a
上的投影等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为120°,且|
a
|=|
b
|=4
,那么
b
•(2
a
+
b
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)已知向量
a
b
的夹角为120°,|
a
|=|
b
|=1.
c
a
+
b
共线,|
a
+
c
|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区二模)已知向量
a
b
的夹角为120°,|
a
|=2
,且(2
a
+
b
)⊥
a
,则|
b
|
=________(  )

查看答案和解析>>

同步练习册答案