精英家教网 > 高中数学 > 题目详情

【题目】经市场调查,某超市的一种商品在过去的一个月内(以30天计算),销售价格与时间(天)的函数关系近似满足,销售量与时间(天)的函数关系近似满足

1)试写出该商品日销售金额关于时间的函数表达式;

2)求该商品的日销售金额的最大值与最小值.

【答案】(1);(2)当时,最大值为;当时,最小值为

【解析】

1)对分类讨论求出该商品日销售金额关于时间的函数表达式;(2)分别求出分段函数的每一段的最值,再比较即得该商品的日销售金额的最大值与最小值.

1)当时,

时,

2时,由双勾函数的性质知上单减,

在区间上单增,

∴当时,最小值为,当时,最大值为

时,单减,则在区间单减,

综上,当时,最大值为;当时,最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为121624.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型;,其中abcpqr都是常数.

1)根据实验数据,分别求出这两种函数模型的解析式;

2)若第4天和第5天观测的群落单位数量分别为4072,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为平面直角坐标系的坐标原点,焦点为圆的圆心.经过点的直线交抛物线两点,交圆两点,在第一象限,在第四象限.

(1)求抛物线的方程;

(2)是否存在直线使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,AB=2AD,为DC的中点,将△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)当AB=2时,求三棱锥的体积;

(2)求证:BM⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,数列满足.

(Ⅰ)当时,分别写出数列的前5项;

(Ⅱ)证明:当时,存在正整数,使得

(Ⅲ)当时,是否存在实数及正整数,使得数列的前项和?若存在,求出实数及正整数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中中,直线,圆的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若直线与圆交于两点,且的面积是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右焦点,且.

(1)求椭圆的方程;

(2)设为椭圆上任意一点,以为圆心,为半径作圆,当圆与直线有公共点时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,且将全班25人的成绩记为由右边的程序运行后,输出.据此解答如下问题:

求茎叶图中破损处分数在[50,60,[70,80,[80,90各区间段的频数;

利用频率分布直方图估计该班的数学测试成绩的众数中位数分别是多少?

查看答案和解析>>

同步练习册答案