精英家教网 > 高中数学 > 题目详情

【题目】若函数 的定义域为A,函数g(x)=lg(x﹣1),x∈[2,11]的值域为B,则A∩B为(  )
A.(﹣∞,1)
B.(﹣∞,1]
C.[0,1]
D.(0,1]

【答案】C
【解析】解答:∵函数 ,∴1﹣x≥0,
x≤1,
∴A={x|x≤1},
∵g(x)=lg(x﹣1),x∈[2,11]
∵g(x)在x∈[2,11]上为增函数,
∴g(x)∈[0,1],
∴B={x|0≤x≤1},
∴A∩B为[0,1].
故选C.
分析:根据根式有意义的条件,求出函数的定义域A,再根据对数的定义域,求出其值域B,然后两集合取交集.
【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①命题:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3

②若f(x)=2x﹣2﹣x,则x∈R,f(﹣x)=﹣f(x);

③若f(x)=x+,则x0∈(0,+∞),f(x0)=1;

④等差数列{an}的前n项和为Sn,若a4=3,则S7=21;

⑤在△ABC中,若A>B,则sinA>sinB.

其中真命题是____.(只填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的历史收益率的频率分布直方图如图所示:

(1)试计算该产品收益率的中位数;

(2)若该产品的售价(元)与销量(万件)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组的对应数据:

售价(元)

25

30

38

45

52

销量(万份)

7.5

7.1

6.0

5.6

4.8

据此计算出的回归方程为,求的值;

(3)若从上述五组销量中随机抽取两组,求两组销量中恰有一组超过6万件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦距为2,过短轴的一个端点与两个焦点的圆的面积为,过椭圆的右焦点作斜率为)的直线与椭圆相交于两点,线段的中点为

(1)求椭圆的标准方程;

(2)过点垂直于的直线与轴交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对甲、乙的学习成绩进行抽样分析,各抽五门功课,得到的观测值如表:

60

80

70

90

70

80

60

70

80

75

问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?(
A.甲的平均成绩较好,乙的各门功课发展较平衡
B.甲的平均成绩较好,甲的各门功课发展较平衡
C.乙的平均成绩较好,甲的各门功课发展较平衡
D.乙的平均成绩较好,乙的各门功课发展较平衡

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={ x|x },B={ x|x>4 },则有(  )
A.2∈A∩B
B.2∈A∪B
C.2A∩B
D.2A∪B

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在正方形ABCD中,点E,F分别是AB,BC的中点.将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.

(1)求证:平面PBD⊥平面BFDE;

(2)求二面角P﹣DE﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设要抽查某企业生产的某种品牌的袋装牛奶的质量是否达标,现从700袋牛奶中抽取50袋进行检验.利用随机数表抽取样本时,先将700袋牛奶按001,002,…,700进行编号,如果从随机数表第3行第1组数开始向右读,最先读到的5袋牛奶的编号是614,593,379,242,203,请你以此方式继续向右读数,随后读出的3袋牛奶的编号是 . (下列摘取了随机数表第1行至第5行)

查看答案和解析>>

同步练习册答案