精英家教网 > 高中数学 > 题目详情

【题目】如图所示的多面体是由一个直平行六面体被平面所截后得到的,其中

(Ⅰ)求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(Ⅰ)见解析; (Ⅱ).

【解析】试题分析:(Ⅰ底面中,根据余弦定理求,三边满足勾股定理,所以,又根据原几何体是直平行六面体,所以,也能证明,这样就垂直了平面内的两条相交直线,所以线面垂直;(Ⅱ)以点为原点, 分别为轴建立空间直角坐标系,求平面的法向量,根据公式.

试题解析:(Ⅰ)证明:在中,∵

由余弦定理

在直平行六面体中, 平面 平面,∴

平面

(Ⅱ)解:如图以为原点建立空间直角坐标系

设平面的法向量

,得

设直线和平面的夹角为

所以直线与平面所成角的正弦值为. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆 的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为4.

(1)求椭圆的标准方程;

(2)若直线交椭圆 两点, )为椭圆上一点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,扇形的半径为r cm,周长为20cm,问扇形的圆心角α等于多少弧度时,这个扇形的面积最大,并求出扇形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图像在点M(1f(1))处的切线方程为x2y50

(1)求函数yf(x)的解析式;

(2)求函数yf(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点,左右焦点分别为,圆与直线相交所得弦长为2. 

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是椭圆上不在轴上的一个动点, 为坐标原点,过点的平行线交椭圆两个不同的点.

(1)试探究的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.

(2)记的面积为 的面积为,令,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点,左右焦点分别为,圆与直线相交所得弦长为2. 

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是椭圆上不在轴上的一个动点, 为坐标原点,过点的平行线交椭圆两个不同的点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.

1)快艇至少以多大的速度行驶才能把稿件送到司机手中?

2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD为矩形,ABBPMAC的中点,NPD上一点.

(1)若MN∥平面ABP,求证:NPD的中点;

(2)若平面ABP⊥平面APC,求证:PC⊥平面ABP.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.
(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?
(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.

查看答案和解析>>

同步练习册答案