精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体中,EFMN分别是BC的中点.

1)求证:平面平面NEF;

2)求二面角的平面角的正切值.

【答案】1)证明见解析;(2

【解析】

1)正方形中三个中点,可得,由正方体可证,从而可得线面垂直,又得面面垂直;

2)过点N于点G,连接MG,证明为二面角的平面角.然后求解.

1)证明:因为NF为所在棱的中点,所以平面.

平面,所以.

又因为ME为所在棱的中点,所以均为等腰直角三角形.

所以.所以.所以.

,所以平面NEF.平面MNF

所以平面平面NEF.

2)在平面NEF中,过点N于点G,连接MG.

由(1)知平面NEF,又平面NEF,所以.

,所以平面MNG.所以.

所以为二面角的平面角.

设该正方体的棱长为2.

中,

所以在.

所以二面角的平面角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量(单位:克)分别在中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在内的概率;

(2)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:

方案:所有芒果以10元/千克收购;

方案:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的首项,前n项和满足

(1)求数列的通项公式;

(2)若数列是公比为4的等比数列,且也是等比数列,若数列单调递增,求实数的取值范围;

(3)若数列都是等比数列,且满足,试证明: 数列中只存在三项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国是世界互联网服务应用最好的国家,一部智能手机就可以跑遍国内所有地方,中国市场的移动支付普及率高得惊人.一家大型超市委托某高中数学兴趣小组调查该超市的顾客使用移动支付的情况,调查人员从年龄在内的顾客中,随机抽取了人,调查他们是否使用移动支付,结果如下表:

年龄

使用

不使用

1)为更进一步推动移动支付,超市准备对使用移动支付的每位顾客赠送个环保购物袋,若某日该超市预计有人购物,试根据上述数据估计,该超市当天应准备多少个环保购物袋?

2)填写下面列联表,并根据列联表判断是否有的把握认为使用移动支付与年龄有关?

年龄

年龄

小计

使用移动支付

不使用移动支付

合计

附:下面的临界值表供参考:

参考数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD90°ADBCEF分别为棱ABPC上的点.

1)求证:平面AFD⊥平面PAB

2)若点E满足,当F满足什么条件时,EF∥平面PAD?请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个顶点坐标分别为:,直线经过点.

1)求外接圆的方程;

2)若直线相切,求直线的方程;

3)若直线相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成的角为60°.

(1)求证:AC平面BDE;

(2)求二面角F-BE-D的余弦值

(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为,(为参数),曲线C的参数方程为α为参数).

)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(3),判断点P与直线l位置关系;

)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的极值;

2)求的单调区间.

查看答案和解析>>

同步练习册答案