精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(I)若曲线y=f(x)在点(1,f(1))处的切线与X轴平行,求函数f(x)的单调区间;
(II)若对一切正数x,都有f(x)≤-1恒成立,求a的取值集合.

(Ⅰ)∵f′(x)=-1,
∴曲线y=f(x)在点(1,f(1))处的切线斜率为k=f′(1)=-1,
依题意-1=0,解得a=1,
∴f(x)=lnx-x,f′(x)=-1,
当0<x<1时,f′(x)>0,函数f(x)单调递增;当x>1时,f′(x)<0,函数f(x) 单调递减;
所以函数f(x)的单调增区间为(0,1),减区间为(1,+∞);
(Ⅱ)若a<0,因为此时对一切x∈(0,1),都有>0,x-1<0,所以>x-1,与题意矛盾,
又a≠0,故a>0,由f′(x)=-1,令f′(x)=0,得x=
当0<x<时,f′(x)>0,函数f(x)单调递增;当x>时,f′(x)<0,函数f(x) 单调递减;
所以f(x)在x=处取得最大值-
故对?x∈R+,f(x)≤-1恒成立,当且仅当对?a∈R+-≤-1恒成立.
=t,g(t)=tlnt-t,t>0.则g′(t)=lnt,
当0<t<1时,g′(t)<0,函数g(t)单调递减;当t>1时,g′(t)>0,函数g(t)单调递增;
所以g(t)在t=1处取得最小值-1,
因此,当且仅当=1,即a=1时,-≤-1成立.
故a的取值集合为{1}.
分析:(I)求导数f′(x)=-1,据题意k=f′(1)=0,解得a值,再在定义域内解不等式f′(x)>0,f′(x)<0即可;
(II)分a<0,a>0两种情况讨论:a<0时易判断不成立;a>0时,转化为f(x)的最大值小于等于-1,构造函数可判断a的取值范围;
点评:本题考查利用导数研究函数单调性、曲线上某点切线方程,考查函数的最值求解,考查分类讨论思想,考查函数恒成立问题的解决,转化函数最值是解决恒成立问题的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案