精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数y=f(x)对任意x∈R都满足条件f(x)+f(4-x)=0与f(x+2)-f(x-2)=0,则对函数y=f(x),
下列结论中必定正确的是
①③
①③
.(填上所有正确结论的序号)
①y=f(x)是奇函数;                ②y=f(x)是偶函数;
③y=f(x)是周期函数;              ④y=f(x)的图象是轴对称的.
分析:由f(x+2)-f(x-2)=0可求得f(x+4)=f(x),可判断其周期性,f(x)+f(4-x)=0可结合周期性判断其奇偶性,即可得到结果.
解答:解:∵f(x+2)-f(x-2)=0,∴f[(x+2)+2]=f[(x+2)-2],即f(x+4)=f(x),∴y=f(x)是周期为4的函数;又f(x)+f(4-x)=0,∴f(4-x)=-f(x),又f(4-x)=f(-x),∴f(-x)=-f(x),∴f(x)为奇函数.
故答案为:①③.
点评:本题考查抽象函数的性质及其应用,难点在于对函数周期性与奇偶性的充分结合,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案