精英家教网 > 高中数学 > 题目详情
设定义在R上的函数y=f(x)是奇函数,且f(x)在(-∞,0)为增函数,f(-1)=0,则不等式f(x)≥0的解为(  )
分析:根据题意,f(x)在(-∞,0)为增函数,且f(-1)=0,可得在区间(-∞,0)上,当-1≤x<0时,有f(x)≥f(-1)=0,当x≤-1时,f(x)≤f(-1)=0,进而有奇偶性可得:当x≥1时,有-x≤-1,此时f(x)=-f(-x)≥-f(-1)=0;综合可得答案.
解答:解:∵f(x)在(-∞,0)为增函数,且f(-1)=0,
∴当-1≤x<0时,有f(x)≥f(-1)=0,当x≤-1时,f(x)≤f(-1)=0,
又由y=f(x)是奇函数,
∴当x≥1时,有-x≤-1,则f(x)=-f(-x)≥-f(-1)=0;
综合可得不等式f(x)≥0的解为[-1,0)∪[1,+∞);
故选B.
点评:本题综合考查函数的奇偶性与单调性,解题的易错点在于忽略f(x)≥0中的等号,而错选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义在R上的函数y=f(x)是偶函数,且f(x)在(-∞,0)为增函数.若对于x1<0<x2,且x1+x2>0,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数y=f(x)满足f(x)+f(-x)=0,f(x+2)=f(x),则函数y=f(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数y=f(x)是偶函数,且f(x)在(-∞,0)为增函数,f(-1)=0,则不等式x•f(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数yf(x)满足f(xf(x+2)=12,且f(2 014)=2,则f(0)等于                                                                                      (  )

A.12                              B.6       C.3      D.2

查看答案和解析>>

同步练习册答案