精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=sin2xcos2φ+cos2xsin2φ(φ>0)的图象关于直线x=$\frac{π}{3}$对称,则φ 的最小值为$\frac{5π}{12}$.

分析 f(x)=sin2xcos2φ+cos2xsin2φ=sin(2x+2φ)的图象关于直线x=$\frac{π}{3}$对称,可得2×$\frac{π}{3}$+2φ=kπ+$\frac{π}{2}$,即可求出φ 的最小值.

解答 解:∵f(x)=sin2xcos2φ+cos2xsin2φ=sin(2x+2φ)的图象关于直线x=$\frac{π}{3}$对称,
∴2×$\frac{π}{3}$+2φ=kπ+$\frac{π}{2}$,
∴φ=$\frac{kπ}{2}$-$\frac{π}{12}$,
∵φ>0,∴φ 的最小值为$\frac{5π}{12}$,
故答案为$\frac{5π}{12}$.

点评 本题考查和角的正弦公式,考查三角函数图象的对称性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=log3x+x-3的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.写出命题“若a2>b2,则|a|>|b|”的逆命题若|a|>|b|,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,b=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=\frac{1}{{ln({3x+1})}}$的定义域是(  )
A.$({-\frac{1}{3},+∞})$B.$({-\frac{1}{3},0})∪({0,+∞})$C.$[{-\frac{1}{3},+∞})$D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB、CD是⊙O的两条直径,P是圆周上任一点,作PM⊥AB,PN⊥CD,AH⊥CD,求证:MN=AH.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,同时满足两个条件“①?x∈R,f($\frac{π}{12}+x$)+f($\frac{π}{12}-x$)=0;②当-$\frac{π}{6}$<x<$\frac{π}{3}$时,f′(x)>0”的一个函数是(  )
A.f(x)=sin(2x+$\frac{π}{6}$)B.f(x)=cos(2x+$\frac{π}{3}$)C.f(x)=sin(2x-$\frac{π}{6}$)D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(  )
A.y=x+1B.y=-x2+1C.y=|x|+1D.$y=1-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x<1,则$\frac{{{x^2}-x+1}}{x-1}$的值域为(-∞,-1].

查看答案和解析>>

同步练习册答案