精英家教网 > 高中数学 > 题目详情

下列几个命题:
①方程有一个正实根,一个负实根,则a<0;
②函数是偶函数,但不是奇函数;
③函数的定义域是[-2,2],则函数的定义域为[-1,3];
④一条曲线和直线y=a(a)的公共点个数是m,则m的值不可能是1.其中真命题的个数是

A.1B.2C.3D.4

B

解析试题分析:对于①∵方程的有一个正实根,一个负实根,则,因此正确;对于②要使函数有意义,则,解得,因此y=0(),故函数既是偶函数,又是奇函数,故不正确;对于③函数的定义域是[-2,2],则函数的定义域为[-3,1],故不正确;对于④一条曲线和直线y=a(aR)的有公共点,则|3-x2|=a≥0,∴x2-3=a,即x2=3±a>0,∴x=±,因此公共点的个数m可以是2,4,故m的值不可能是1.综上可知:其中正确的有 ①④,故选B.
考点:命题真假的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知:实数满足,其中:实数满足,且的必要不充分条件,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足x2-x-6≤0,或x2+2x-8>0,且 的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数f(x)是偶函数,在上导数>0恒成立,则下列不等式成立的是(   ).

A.f(-3)<f(-1)<f(2) B.f(-1)<f(2)<f(-3)
C.f(2)<f(-3)<f(-1) D.f(2)<f(-1)<f(-3)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知奇函数f (x)和偶函数g(x)分别满足 ,若存在实数a,使得 成立,则实数b的取值范围是

A.(-1,1) B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数的图像如图所示,则的取值范围是(   )
 

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

定义在R上的函数具有下列性质:①;②;③上为增函数,则对于下述命题:
为周期函数且最小正周期为4;
的图像关于轴对称且对称轴只有1条;
上为减函数.
正确命题的个数为(    )

A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的图象可能是(   )

A                      B                    C                     D

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的零点必落在区间(     )

A. B. C. D.(1,2)

查看答案和解析>>

同步练习册答案