精英家教网 > 高中数学 > 题目详情
19.已知数列{an}是等差数列,其前n项和为Sn,且满足a1+a5=12,S4=20;数列{bn}满足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)设cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn

分析 (1)利用等差数列的通项公式可得an,利用递推关系可得bn
(2)利用“错位相减法”与“裂项求和”方法即可得出.

解答 解:(1)设等差数列{an}的首项为a1,公差为d,则由题意:$\left\{\begin{array}{l}{2{a}_{1}+4d=12}\\{4{a}_{1}+6d=20}\end{array}\right.$,
解得a1=2,d=2,∴an=2n.
∵数列{bn}满足:b1+3b2+32b3+…+3n-1bn=$\frac{n}{3}$,(n∈N*).
∴n≥2时,b1+3b2+32b3+…+3n-2bn-1=$\frac{n-1}{3}$,
相减可得:3n-1bn=$\frac{1}{3}$,解得bn=$\frac{1}{{3}^{n}}$.
当n=1时,b1=$\frac{1}{3}$.
经检验知n=1时,适合bn=$\frac{1}{{3}^{n}}$.
∴bn=$\frac{1}{{3}^{n}}$.
(2)cn=anbn+$\frac{1}{{a}_{n}{a}_{n+1}}$=2n$•\frac{1}{{3}^{n}}$+$\frac{1}{4n(n+1)}$,
设数列$\{n•\frac{1}{{3}^{n}}\}$的前n项和为:Pn,则Pn=$1×\frac{1}{3}+2×\frac{1}{{3}^{2}}$+$3×\frac{1}{{3}^{3}}$+…+$n•\frac{1}{{3}^{n}}$,
∴$\frac{1}{3}{P}_{n}$=$1×\frac{1}{{3}^{2}}+2×\frac{1}{{3}^{3}}$+…+$(n-1)×\frac{1}{{3}^{n}}$+n×$\frac{1}{{3}^{n+1}}$,
∴$\frac{2}{3}{P}_{n}$=$\frac{1}{3}+\frac{1}{{3}^{2}}+$…+$\frac{1}{{3}^{n}}$-n×$\frac{1}{{3}^{n+1}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$-n×$\frac{1}{{3}^{n+1}}$,
∴Pn=$\frac{3}{4}$-$\frac{3+2n}{4×{3}^{n}}$.
$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列$\{\frac{1}{n(n+1)}\}$的前n项和为:$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4(n+1)}$.
∴数列{cn}的前n项和Tn=$\frac{3}{2}-\frac{3+2n}{2×{3}^{n}}$+$\frac{n}{4(n+1)}$.

点评 本题考查了“错位相减法”与“裂项求和”方法、等差数列与等比数列的系统公司及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数y=$\sqrt{-{x^2}+4x+2}$的值域是(  )
A.$(-∞,\sqrt{6}]$B.(-∞,2]C.$[{\sqrt{6},+∞})$D.[0,$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC的内角A、B、C的对边长分别为a,b,c,且ac=2b2
(Ⅰ)求证:$cosB≥\frac{3}{4}$;
(Ⅱ)若cos(A-C)+cosB=1,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C的顶点为坐标原点,焦点F(1,0),其准线与x轴的交点为K,过点K的直线l与C交于A,B两点,点A关于x轴的对称点为D.
(1)证明:点F在直线BD上;
(2)设$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{\sqrt{10}}{10}$,则实数m=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①命题“?x∈R,都有x2-x+1≥$\frac{3}{4}$”的否定是“?x∈R,使x2-x+1<$\frac{3}{4}$”
②命题“设向量$\overrightarrow{a}$=(4sinα,3),$\overrightarrow{b}$=(2,3cosα),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则α=$\frac{π}{4}$的逆命题、否命题、逆否命题中真命题的个数为2;
③集合A={x|x2-x=0},B={y|y=-lg(sinx)},C={y|y=$\sqrt{1-{t}^{2}}$}则x∈A是x∈B∩C的充分不必要条件. 
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在R上的函数f(x)满足f(1-x)+f(1+x)=2,且当x>1时,f(x)=$\frac{x}{{e}^{x-2}}$,则曲线y=f(x)在x=0处的切线方程是x+y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知长方体的长、宽、高分别为3,4,5,则体对角线长度为$5\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图一块长方形区域ABCD,AD=2,AB=1,在边AD的中点O处有一个可转动
的探照灯,其照射角∠EOF始终为$\frac{π}{4}$,设∠AOE=α,探照灯照射在长方形ABCD内部区域的面积为S;
(1)当$0≤α<\frac{π}{2}$时,求S关于α的函数关系式;
(2)当$0≤α≤\frac{π}{4}$时,求S的最大值;
(3)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来
回”,忽略OE在OA及OC处所用的时间),且转动的角速度大小一定,设AB边上有一点G,且$∠AOG=\frac{π}{6}$,求点G在“一个来回”中被照到的时间.

查看答案和解析>>

同步练习册答案