精英家教网 > 高中数学 > 题目详情

2008是等差数列的4,6,8,…中的                     (   )

A.第1000项     B. 第1001项    C. 第1002项   D. 第1003项

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•河西区三模)设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b2=7,a3+b3=16.
(1)求{an},{bn}的通项公式;
(2)求数列{
anbn
}
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知数列{an}的前n项和Sn=[2+(-1)n]•n(n∈N*
(1)求数列{an}的通项公式,
(2)若bn=(an-t)(-1)n(t为常数),且数列{bn}是等差数列,求常数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•盐城一模)如果有穷数列a1,a2,a3,…,an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如,由组合数组成的数列
C
0
m
, 
C
1
m
, …, 
C
m
m
就是“对称数列”.
(1)设{bn}是项数为7的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{bn}的每一项;
(2)设{cn}是项数为2k-1(正整数k>1)的“对称数列”,其中ck,ck+1,…,c2k-1是首项为50,公差为-4的等差数列.记{cn}各项的和为S2k-1.当k为何值时,S2k-1取得最大值?并求出S2k-1的最大值;
(3)对于确定的正整数m>1,写出所有项数不超过2m的“对称数列”,使得1,2,22,…,2m-1依次是该数列中连续的项;当m>1500时,求其中一个“对称数列”前2008项的和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

第一行是等差数列0,1,2,3,…,2008,将其相邻两项的和依次写下作为第二行,第二行相邻两项的和依次写下作为第三行,依此类推,共写出2008行.
0,1,2,3,…,2005,2006,2007,2008
1,3,5,…,4011,4013,4015
4,8,…,8024,8028

(1)由等差数列性质知,以上数表的每一行都是等差数列.记各行的公差组成数列{di}(i=1,2,3…,2008).求通项公式di
(2)各行的第一个数组成数列{bi}(1,2,3,…,2008),求数列{bi}所有各项的和.

查看答案和解析>>

同步练习册答案