精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC= ,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上, =λ.若CM∥平面AEF,求实数λ的值.

【答案】
(1)解:因为四棱柱ABCD﹣A1B1C1D1为直四棱柱,

所以A1A⊥平面ABCD.

又AE平面ABCD,AD平面ABCD,

所以A1A⊥AE,A1A⊥AD.

在菱形ABCD中∠ABC= ,则△ABC是等边三角形.

因为E是BC中点,所以BC⊥AE.

因为BC∥AD,所以AE⊥AD.

建立空间直角坐标系.则A(0,0,0),C( ,1,0),D(0,2,0),

A1(0,0,2),E( ,0,0),F( ,1).

=(0,2,0), =(﹣ ,1),

所以异面直线EF,AD所成角的余弦值为 =


(2)解:设M(x,y,z),由于点M在线段A1D上,且 =λ,

则(x,y,z﹣2)=λ(0,2,﹣2).

则M(0,2λ,2﹣2λ), =(﹣ ,2λ﹣1,2﹣2λ).

设平面AEF的法向量为 =(x0,y0,z0).

因为 =( ,0,0), =( ,1),

,得x0=0, y0+z0=0.

取y0=2,则z0=﹣1,

则平面AEF的一个法向量为n=(0,2,﹣1)

由于CM∥平面AEF,则 =0,即2(2λ﹣1)﹣(2﹣2λ)=0,解得λ=


【解析】(1)建立坐标系,求出直线的向量坐标,利用夹角公式求异面直线EF,AD所成角的余弦值;(2)点M在线段A1D上, =λ.求出平面AEF的法向量,利用CM∥平面AEF,即可求实数λ的值.
【考点精析】掌握异面直线及其所成的角和直线与平面平行的性质是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2﹣e)x. ①求函数h(x)=f (x)﹣g (x)的单调区间;
②若函数F(x)= 的值域为R,求实数m的取值范围;
(2)若存在实数x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求证:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:

月份

违章驾驶员人数

(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程

(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有五张卡片,其中红色卡片三张,标号分别为123;蓝色卡片两张,标号分别为12.

(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;

(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知函数.

(Ⅰ)若在区间上单调递增,求实数的取值范围;

(Ⅱ)若存在唯一整数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系内三点.

(1) 求过三点的圆的方程,并指出圆心坐标与圆的半径

(2)求过点与条件 (1) 的圆相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)的图象关于y轴对称,则当φ取最小的值时,g(0)=

查看答案和解析>>

同步练习册答案