精英家教网 > 高中数学 > 题目详情

【题目】甲乙两名运动员互不影响地进行四次设计训练,根据以往的数据统计,他们设计成绩均不低于8环(成绩环数以整数计),且甲乙射击成绩(环数)的分布列如下:

(I)求 的值;

(II)若甲乙两射手各射击两次,求四次射击中恰有三次命中9环的概率;

(III)若两个射手各射击1次,记两人所得环数的差的绝对值为,求的分布列和数学期望.

【答案】(1) (2) (3)见解析

【解析】试题分析:(1)由题意,根据分布列的性质,即可求得

(II)记事件:甲命中环,乙命中环,事件:甲命中环,乙命中环,则四次设计中恰有三次命中环为事件,利用概率的加法公式,即可求解相应的概率;

(III)由题意,得出随机的取值,求得取每个值的概率,即可得到分布列,利用期望的公式,即可求解数学期望.

试题解析:

(1)由题意易得 .

(II)记事件:甲命中1次9环,乙命中2次9环,事件:甲命中2次9环,乙命中1次9环,则四次设计中恰有三次命中9环为事件

(III)的取值分别为0,1,2,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的为________(正确序号全部填上)

1)空间中,一个角的两边与另一个角的两边分别平行,则这两个角相等或互补;

2)一个二面角的两个半平面与另一个二面角的两个半平面分别垂直,则这两个二面角相等或互补;

3)直线为异面直线,所成角的大小为,过空间一点作直线,使l与直线及直线都成相等的角,这样的直线可作3条;

4)直线与平面相交,过直线可作唯一的平面与平面垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)

总计

喜爱

40

60

100

不喜爱

20

20

40

总计

60

80

140

(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)

(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.

附:临界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:

平面

三棱锥的体积为定值;异面直线所成的角为定值,

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形为平行四边形, 的中点.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若AB=B,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.


46.6

563

6.8

289.8

1.6

1469

108.8

表中==

(Ⅰ)根据散点图判断,,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);

(Ⅱ)根据()的判断结果及表中数据,建立y关于x的回归方程;

(III)已知这种产品的年利润zx,y的关系为,根据()的结果回答下列问题:

(Ⅰ)当年宣传费时,年销售量及年利润的预报值时多少?

(Ⅱ)当年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1) 证明:数列是等比数列;

(2) 求使不等式成立的所有正整数m、n的值;

(3) 如果常数0 < t < 3,对于任意的正整数k,都有成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1) 试估计哪个班级学生平均上网的时间较长。

(2)从A班的样本数据中随机抽取一个不超过19的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.

查看答案和解析>>

同步练习册答案