精英家教网 > 高中数学 > 题目详情
若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.
6
由椭圆方程得F(-1,0),设P(x0,y0),则·=(x0,y0)·(x0+1,y0)=+x0.
∵P为椭圆上一点,∴=1.
·+x0+3+x0+3=(x0+2)2+2.
∵-2≤x0≤2,∴·的最大值在x0=2时取得,且最大值等于6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中点在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆C的方程;
(2)己知点P(2,3),Q(2,-3)在椭圆上,点A、B是椭圆上不同的两个动点,且满足APQ=BPQ,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形CDEF内接于椭圆,且它的四条边与坐标轴平行,正方形GHPQ的顶点G,H在椭圆上,顶点P,Q在正方形的边EF上.且CD=2PQ=

(1)求椭圆的方程;
(2)已知点M(2,1),平行于OM的直线l在y轴上的截距为m(m:≠0),l交椭圆于A,B两个不同点,求证:直线MA,MB与x轴始终围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆,圆,过椭圆上任一与顶点不重合的点P引圆O的两条切线,切点分别为A,B,直线AB与x轴,y轴分别交于点M,N,则_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.
 
(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,·=0.

(1)求椭圆的离心率;
(2)若△ABF1的周长为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,有椭圆=1(a>b>0)的焦距为2c,以O为圆心,a为半径的圆.过点作圆的两切线互相垂直,则离心率e=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆+y2=1的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案