精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|-1≤x<2},B={x|y=$\sqrt{2x+1}$+$\sqrt{3-x}$},求:①A∩B,②A∪B,③(∁RA)∩(∁RB)

分析 根据条件求出集合B的等价条件,利用集合的基本运算进行求解即可.

解答 解:由$\left\{\begin{array}{l}{2x+1≥0}\\{3-x≥0}\end{array}\right.$得$\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{x≤3}\end{array}\right.$,得$-\frac{1}{2}$≤x≤3,即B={x|y=$\sqrt{2x+1}$+$\sqrt{3-x}$}=B={x|$-\frac{1}{2}$≤x≤3},
则:①A∩B={x|$-\frac{1}{2}$≤x<2},
②A∪B={x|-1≤x≤3},
③(∁RA)={x|x≥2或x<-1},(∁RB)={x|x>3或x<$-\frac{1}{2}$},
则(∁RA)∩(∁RB)={x|x>3或x<-1}.

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.过点$P(-\sqrt{3},0)$作直线l与圆O:x2+y2=1交于A、B两点,O为坐标原点,设∠AOB=θ,且$θ∈(0,\frac{π}{2})$,当△AOB的面积为$\frac{{\sqrt{3}}}{4}$时,直线l的斜率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若sinAsinB十cosAcosB=1,则它是(  )三角形.
A.直角B.等腰C.等腰直角D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的定义域和值域:
(1)y=tan(x+$\frac{π}{4}$);
(2)y=$\sqrt{\sqrt{3}-tanx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$.
(1)求sinAcosA
(2)求sinA-cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若关于x的不等式3ax2+2x-1>0在(2,+∞)上有解,则实数a的取值范围是[-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在正三棱锥S-ABC中,M,N分别是棱SC、BC的中点,且MN⊥AM,若侧棱SA=$\sqrt{3}$,则正三棱锥S-ABC外接球的表面积是9π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若($\frac{3}{5}$)x-1>1,则x的取值范围是(-∞,1).

查看答案和解析>>

同步练习册答案