精英家教网 > 高中数学 > 题目详情
10.设集合A={x|-1≤x≤7},S={x|k+1≤x≤2k-1},求满足下列条件的k的取值范围:
(1)A?S;
(2)A∩S=∅.

分析 根据题意分S为空集与不为空集两种情况,求出k的范围即可.

解答 解:(1)∵A={x|-1≤x≤7},S={x|k+1≤x≤2k-1},A?S,
∴当S=∅,即k+1>2k-1时,满足题意,此时k<2;
当S≠∅,k+1≤2k-1时,则有2k-1≤7且k+1≥-1,
解得:2≤k≤4,
综上,k的范围为k≤4.
(2)∵A={x|-1≤x≤7},S={x|k+1≤x≤2k-1},A∩S=∅,
∴当S=∅,即k+1>2k-1时,满足题意,此时k<2;
当S≠∅,k+1≤2k-1时,则有2k-1<-1或k+1>7,
解得:k>6,
综上,k的范围为k<2或k>6.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.(1)设函数f(x)满足:2f(x)+x2f($\frac{1}{x}$)=$\frac{{3x}^{3}{-x}^{2}+4x+3}{x+1}$,求f(x);
(2)设函数f(x)满足:(x-1)f($\frac{x+1}{x-1}$)-f(x)=x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(2-x)=$\sqrt{4-{x}^{2}}$,则函数f($\sqrt{x}$)的定义域为[0,16].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}前n项和为Sn,且an=$\frac{1}{2}$(3n+Sn),n∈N*
(1)求{an}的通项公式an
(2){an}中是否存在二项构成等差数列;若存在,求出一组;若不存在,说明理由.
(3)令bn=$\frac{3}{{a}_{n}}$,求证:b1+b2+…+bn<2.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知-2<x<0,则y=x$\sqrt{4-{x}^{2}}$的最小值为(  )
A.2B.3C.$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的解析式:
(1)已知f(x)是二次函数且f(0)=2,f(2-x)-f(x)=0,f(1)=-2,求f(x);
(2)已知f($\sqrt{x}$+1)=x+3,求f(x);
(3)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解方程3x2-4x+1=0,并求出不等式3x2-4x+1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.旅店有客床110张,每床每晚收费10元时可全部客满,若收费提高2元,便减少10张客床租出.为使旅店获利最大,则每床每晚收费应提高6元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某城市有甲,乙两种报纸供居民们订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.
(1)A与C;
(2)B与D;
(3)B与C;
(4)C与D.

查看答案和解析>>

同步练习册答案