精英家教网 > 高中数学 > 题目详情

【题目】某建材公司在两地各有一家工厂,它们生产的建材由公司直接运往地.由于土路交通运输不便,为了减少运费,该公司预备投资修建一条从地或地直达地的公路;若选择从某地修建公路,则另外一地生产的建材可先运输至该地再运至以节约费用.已知之间为土路,土路运费为每吨千米20元,公路的运费减半,三地距离如图所示.为了制定修路计划,公司统计了最近10天两个工厂每天的建材产量,得到下面的柱形图,以两个工厂在最近10天日产量的频率代替日产量的概率.

(1)求“两地工厂某天的总日产量为20吨”的概率;

(2)以修路后每天总的运费的期望为依据,判断从哪一地修路更加划算.

【答案】(1) ;(2) 从地修路更划算.

【解析】试题分析:(1)由已知可得所求概率.

(2)同理可得两地工厂某天的总日产量为19吨,21吨的概率分别为,从而求得

地修路,从地到地每天的运费的期望为(元),从地到地每天的运费的期望为:

(元),因此从地修路,每天的总运费的期望为:(元),同理可得从地修路,每天的总运费的期望为:(元).综上:从地修路更划算.

试题解析:(1)设“两地公司总日产量为20吨”为事件

.

(2)同样可求两地工厂某天的总日产量为19吨,21吨的概率分别为.

若从地修路,从地到地每天的运费的期望为:(元).

地到地每天的运费的期望为:

(元).

所以从地修路,每天的总运费的期望为:(元).

若从地修路,从地到地每天的运费的期望为:.

地到地每天的运费的期望为:

(元).

所以从地修路,每天的总运费的期望为:(元).

所以从地修路更划算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:

(Ⅰ)求甲流水线样本合格的频率;

(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三边长成等差数列,公差为2,且最大角的正弦值为 ,则这个三角形的周长是(
A.9
B.12
C.15
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设,求的最小值;

(2)若曲线仅有一个交点,证明:曲线在点处有相同的切线,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 =1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为 ,其中A(a,0),B(0,﹣b).
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在y轴正半轴上的端点,过B作直线与双曲线交于M,N两点,求B1M⊥B1N时,直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程x2+y2﹣ax+y+1=0表示圆;命题q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直线,若p∨q为真命题,p∧q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1的离心率为 ,点( ,0)是双曲线的一个顶点.
(1)求双曲线的方程;
(2)经过的双曲线右焦点F2作倾斜角为30°直线l,直线l与双曲线交于不同的A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1, )在椭圆E: =1上,若斜率为 的直线l与椭圆E交于B,C两点,当△ABC的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车乙种肥料的主要原料是磷酸盐1t、硝酸盐15t.现库存磷酸盐10t、硝酸盐66t.已知生产1车皮甲种肥料,产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元.那么分别生产甲、乙两种肥料各多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

同步练习册答案