精英家教网 > 高中数学 > 题目详情

函数f(x)的定义域为R,对任意实数x满足f(x-1)=f(3-x),且f(x-1)=f(x-3).当1≤x≤2时,函数f(x)的导数f′(x)>0,则f(x)的单调递减区间是(  )

(A)[2k,2k+1](k∈Z)

(B)[2k-1,2k](k∈Z)

(C)[2k,2k+2](k∈Z)

(D)[2k-2,2k](k∈Z)

A.由f(x-1)=f(3-x)得,

f(x+2)=f(-x),

又由f(x-1)=f(x-3)得,

f(x+2)=f(x),

∴f(x)是以2为周期的偶函数.

∵1≤x≤2时,函数f′(x)>0,

∴f(x)在[1,2]上为增函数,

∴f(x)在[-1,0]上为增函数,

在[0,1]上为减函数.

∴f(x)的单调递减区间是[2k,2k+1](k∈Z).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列说法:
(1)函数y=
-2x 3
与y=x
-2x
是同一函数

(2)f(x)=x+
2
x
,(x∈(0,1))的值域为(3,+∞)

(3)若函数f(x)的定义域为[0,2],则函数g(x)=
f(2x)
x-2
的定义域为[0,2)

(4)集合{x∈N|x=
6
a
,a∈N *}
中只有四个元素;其中正确的是
(2)(4)
(2)(4)
(只写番号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,2],则函数f(
x
)
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x+1)定义域是[-1,1],则函数f(x)的定义域是(    )

A.[-1,1]          B.R              C.[0,2]           D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=的定义域为R,则k的取值范围为___________.

查看答案和解析>>

科目:高中数学 来源:2010年宁夏高一上学期期中考试数学卷 题型:选择题

已知函数f(x)=的定义域是一切实数,则m的取值范围是(   )

A.0<m≤4        B.0≤m≤1         C.m≥4          D.0≤m≤4

 

查看答案和解析>>

同步练习册答案