精英家教网 > 高中数学 > 题目详情

【题目】已知直三棱柱ABCA1B1C16个顶点都在球O的球面上,若AB3AC3,∠BAC120°AA18,则球O的表面积为(

A.25πB.πC.100πD.π

【答案】C

【解析】

根据已知条件,利用正余弦定理求出底面外接圆的半径, 设此圆的圆心为,直三棱柱外接球的球心为,利用球的截面圆的圆心与球心的连线垂直于截面,,求出球的半径,代入球的表面积公式求解即可.

在底面,由余弦定理可得,

,

所以,

在底面,由正弦定理可得,

,,解得,

设底面圆的圆心为,直三棱柱外接球的球心为,球的半径为,

由球的截面圆的圆心与球心的连线垂直于截面知,

底面,,

,由勾股定理可得,

,即

所以,

由球的表面积公式可得,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

时,求函数在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕成本为50元,每个蛋糕的售价为100元,如果当天卖不完,剩余的蛋糕作垃圾处理.现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.100天记录的各需求量的频率作为每天各需求量发生的概率.

1若该蛋糕店某一天制作生日蛋糕17个,设当天的需求量为,则当天的利润(单位:元)是多少?

2若蛋糕店一天制作17个生日蛋糕.

求当天的利润(单位:元)关于当天需求量的函数解析式;

求当天的利润不低于600圆的概率.

(3)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学六年级学生的进行一分钟跳绳检测,现一班二班各有50人,根据检测结果绘出了一班的频数分布表和二班的频率分布直方图.

一班检测结果频数分布表:

跳绳个数区间

频数

7

13

20

8

2

1)根据给出的图表估计一班和二班检测结果的中位数(结果保留两位小数);

2)跳绳个数不小于100个为优秀,填写下面2×2列联表,并根据列联表判断是否有95%的把握认为检测结果是否优秀与班级有关.

一班

二班

合计

优秀

不优秀

合计

参考公式及数据:

0.100

0.050

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形为矩形, 的中点,

1)求证:

2)若时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的离心率为O是坐标原点,点AB分别为椭圆C的左右顶点,|AB|4

1)求椭圆C的标准方程.

2)若P是椭圆C上异于AB的一点,直线l交椭圆CMN两点,APOMBPON,则△OMN的面积是否为定值?若是,求出定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

10

50

个体经营户

100

50

150

合计

140

60

200

1)写出选择5个国家综合试点地区采用的抽样方法;

2)根据列联表判断是否有的把握认为此普查小区的入户登记是否顺利与普查对象的类别有关

3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有ABCD四人先后感染了新型冠状病毒,其中只有A到过疫区,B肯定是受A感染的,对于C,因为难以判定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是,同样也假设DABC感染的概率都是.在这种假定之下,BCD中直接受A感染的人数X就是一个随机变量,写出X的可能取值为______,并求X的均值(即数学期望)为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案