精英家教网 > 高中数学 > 题目详情

【题目】为调查大学生这个微信用户群体中每人拥有微信群的数量,现从武汉市大学生中随机抽取100位同学进行了抽样调查,结果如下:

微信群数量

频数

频率

0至5个

0

0

6至10个

30

0.3

11至15个

30

0.3

16至20个

a

c

20个以上

5

b

合计

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.

【答案】解:(Ⅰ)由已知得:0+30+30+a+5=100,解得a=35,

(Ⅱ)依题意可知,微信群个数超过15个的概率为p=

X的所有可能取值0,1,2,3.

则P(X=0)=

P(X=1)= =

P(X=2)= =

P(X=3)= =

其分布列如下:

X

0

1

2

3

P

EX= =


【解析】(Ⅰ)由频率分布表能求出a,b,c的值.(Ⅱ)依题意可知,微信群个数超过15个的概率为p= . X的所有可能取值0,1,2,3.分别求出相应的概率,由此能求出X的分布列和EX.
【考点精析】根据题目的已知条件,利用离散型随机变量及其分布列的相关知识可以得到问题的答案,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1)判断函数的奇偶性,并予以证明;

2时求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是

用宽(单位)表示所建造的每间熊猫居室的面积(单位);

怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1 , AB,CC1的中点,则异面直线A1E与GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

(1)若直线与圆交于不同的两点,当时,求的值;

(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点?若过定点则求出该定点,若不存在则说明理由;

(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)解关于的不等式

(2)若函数在区间上的值域为,求实数的取值范围;

(3)设函数,求满足的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲、乙是边长为的两块正方形钢板,现要将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积都等于一个正方形的面积(不计焊接缝的面积).

(1)将你的裁剪方法用虚线标示在图中,并作简要说明;

(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,且.当时, .

(1)求上的解析式;

(2)证明上是减函数;

(3)当取何值时,方程上有解.

查看答案和解析>>

同步练习册答案