精英家教网 > 高中数学 > 题目详情

【题目】微信作为一款社交软件已经在支付,理财,交通,运动等各方面给人的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数. 先生朋友圈里有大量好友使用了“微信运动”这项功能.他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:

(1)以样本估计总体,视样本频率为概率,在先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有名,求的分布列和数学期望;

(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动鸟人”.根据题意完成下面的列联表,并据此判断能否有90%以上的把握认为“评定类型”

与“性别”有关?

附:.

【答案】(1)见解析;(2)见解析

【解析】

(1)先确定X的取值,再逐个求解概率,得到分布列和期望;

(2)整合数据,计算卡方,得出结论.

(1)在小明的男性好友中任意取1名.其中走路步数不低于6000的概率为可能取值分别为0,1,2,3.

的分布列为

0

1

2

3

.

(或者写成

(2)完成列联表

运动达人

运动鸟人

总计

6

14

20

4

16

20

总计

10

30

40

的观测值 .

据此判断没有以上的把握认为“评定类型”与“性别”有关.·

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当a=0时,求函数f(x)在(1,f(1))处的切线方程;

(2)令求函数的极值.

(3)若,正实数满足

证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是棱长为2的正方体,为面对角线上的动点(不包括端点),平面于点.

1)试用反证法证明直线是异面直线;

2)设,将长表示为的函数,并求此函数的值域;

3)当最小时,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三位同学毕业后,发现市内一些小家电配件的批发商每天的批发零售的生意很火爆,于是他们三人决定利用所学专业进行自主创业,专门生产这类小家电配件,并与经销商签订了经销合同,他们生产出的小家电配件,以每件元的价格全部由经销商包销.经市场调研,生产这类配件,每月需要投入固定成本为万元,每生产万件配件,还需再投入资金万元.在月产量不足万件时,(万元);在月产量不小于万件时,(万元).已知月产量是万件时,需要再投入的资金是万元.

1)试将生产这些小家电的月利润(万元)表示成月产量(万件)的函数;(注:月利润月销售收入固定成本再投入成本)

2)月产量为多少万件时,这三位同学生产这些配件获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点在y轴上,焦点到准线的距离为2,且对称轴为y.

1)求抛物线C的标准方程;

2)当抛物线C的焦点为时,过F作直线交抛物线于,A、B两点,若直线OAOBO为坐标原点)分别交直线MN两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.

1)求的方程;

2)设点在曲线上,轴上一点(在点右侧)满足,若平行于的直线与曲线相切于点,试判断直线是否过点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆G的中心在坐标原点,其中一个焦点为圆Fx2+y22x0的圆心,右顶点是圆Fx轴的一个交点.已知椭圆G与直线lxmy10相交于AB两点.

I)求椭圆的方程;

(Ⅱ)求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在平行四边形中,于点,将沿折起,使,连接,得到如图②所示的几何体.

(1)求证:平面平面

(2)若点在线段上,直线与平面所成角的正切值为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,点在椭圆上,且的最小值是为坐标原点).

1)求椭圆的标准方程.

2)已知动直线与圆相切,且与椭圆交于两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案