精英家教网 > 高中数学 > 题目详情

【题目】已知如图,矩形所在平面与底面垂直,在直角梯形中,.

1)求证:平面

2)求证:平面

3)求与平面所成角的正弦值.

【答案】1)证明见解析;(2)证明见解析;(3

【解析】

1)根据题意可得,再根据线面平行的判定定理即可证明;

2)根据题意证出,然后根据线面垂直的判定定理证明即可;

3)过,结合题意证明与平面所成角的平面角后,即可求出与平面所成角的正弦值.

1四边形为矩形,

平面

平面

平面.

2)取中点为,连接

边形为正方形,为直角三角形,

可得

平面平面,且四边形为矩形,

平面平面

平面

平面

平面

平面

平面.

3)过

由(2)知平面,且平面

平面

平面

因此与平面所成角的平面角,

中,

可得

中,.

所以与平面所成角的正弦值为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五三斜求积中提出了已知三角形三边求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即.现有满足,且的面积,请运用上述公式判断下列命题正确的是

A.周长为

B.三个内角成等差数列

C.外接圆直径为

D.中线的长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的k的值是(

A.10 B.11 C.12 D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是给定的平面,设不在内的任意两点MN所在的直线为l,则下列命题正确的是(

A.内存在直线与直线l异面

B.内存在直线与直线l相交

C.内存在直线与直线l平行

D.存在过直线l的平面与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量满足,则以下说法正确的有( )个.

②对于平面内任一向量,有且只有一对实数使

③若,且,则的范围为

④设,且处取得最小值,当时,则

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分市某调查机构针对该市市场占有率最高的两种网络外卖企业以下简称外卖A、外卖的服务质量进行了调查,从使用过这两种外卖服务的市民中随机抽取了1000人,每人分别对这两家外卖企业评分,满分均为100分,并将分数分成5组,得到以下频数分布表:

分数

人数

种类

外卖A

50

150

100

400

300

外卖B

100

100

300

200

300

表中得分越高,说明市民对网络外卖服务越满意若得分不低于60分,则表明该市民对网络外卖服务质量评价较高现将分数按“服务质量指标”划分成以下四个档次:

分数

服务质量指标

0

1

2

3

视频率为概率,解决下列问题:

从该市使用过外卖A的市民中任选5人,记对外卖A服务质量评价较高的人数为X,求X的数学期望.

从参与调查的市民中随机抽取1人,试求其评分中外卖A的“服务质量指标”与外卖B的“服务质量指标”的差的绝对值等于2的概率;

M市工作的小王决定从外卖A、外卖B这两种网络外卖中选择一种长期使用,如果从这两种外卖的“服务质量指标”的期望角度看,他选择哪种外卖更合适?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的右焦点坐标为,且点C上.

1)求椭圆的方程;

2)过点的直线lC交于MN两点,P为线段MN的中点,AC的左顶点,求直线AP的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为点表示四月的平均最低气温约为.下面叙述不正确的是(

A.各月的平均最高气温都在以上

B.六月的平均温差比九月的平均温差大

C.七月和八月的平均最低气温基本相同

D.平均最低气温高于的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是曲线上任意一点,动点满足.

(1)求点的轨迹的方程;

(2)过点的直线交两点,过原点与点的直线交直线于点,求证:.

查看答案和解析>>

同步练习册答案