精英家教网 > 高中数学 > 题目详情

【题目】已知集合,其中 表示中所有不同值的个数.

)设集合 ,分别求

)若集合,求证:

是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

【答案】(1) ;(2)见解析;(3).

【解析】试题分析:1)直接利用定义把集合P=2468Q=24816中的值代入即可求出lP)和lQ);
2)先由ai+aj1≤ij≤n)最多有个值,可得,;再利用定义推得所有ai+aj(1≤i<j≤n)的值两两不同,即可证明结论.
(Ⅲ)l(A)存在最小值,设,所以.由此即可证明l(A)的最小值2n-3.

试题解析:

)由

)证明:∵最多有个值,

又集合,任取

时,不妨设,则

时,

∴当且仅当 时,

即所有的值两两不同,

存在最小值,且最小值为

不妨设,可得

中至少有个不同的数,即

,则,即的不同值共有

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在直角坐标系中,的圆心角为所在圆的半径为1,角θ的终边与交于点C.


1)当C的中点时,D为线段OA上任一点,求的最小值;

2)当C上运动时,DE分别为线段OAOB的中点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面的中点.

)求证:

)求证:平面平面

)在平面内是否存在,使得直线平面,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图像在处的切线方程为:

(1)求的值;

(2)若成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下说法:

一年按365天计算,两名学生的生日相同的概率是;买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖;乒乓球赛前,决定谁先发球,抽签方法是从1~1010个数字中各抽取1,再比较大小,这种抽签方法是公平的;昨天没有下雨,则说明昨天气象局的天气预报降水概率是90%”是错误的.

根据我们所学的概率知识,其中说法正确的序号是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数的图象的两相邻对称轴间的距离为.

1)求的值;

2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求函数的单调递减区间.

查看答案和解析>>

同步练习册答案