精英家教网 > 高中数学 > 题目详情

【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:

40岁及以下

40岁以上

合计

基本满意

15

30

45

很满意

25

10

35

合计

40

40

80

(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?

(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

【答案】(1)见解析(2)

【解析】

(1)由列联表计算的观测值即可求解;(2)由题得8名员工的贡献积分及按甲、乙两种方案所获补贴情况,进一步得到“类员工”的人数,再利用古典概型求解即可

(1)根据列联表可以求得的观测值:

.

.

∴有99%的把握认为满意程度与年龄有关

(2)据题意,该8名员工的贡献积分及按甲、乙两种方案所获补贴情况为:

积分

2

3

6

7

7

11

12

12

方案甲

2400

3100

5200

5900

5900

8700

9400

9400

方案乙

3000

3000

5600

5600

5600

9000

9000

9000

由表可知,“类员工”有5名.

设从这8名员工中随机抽取4名进行面谈,恰好抽到3名“类员工”的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

如图,在三棱锥, 侧面与侧面均为等边三角形,中点.

)证明:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,椭圆,为椭圆的左、右顶点.

为椭圆的左焦点,证明:当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.

若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的标准方程.

若直线中所述椭圆相交于两点(不是左、右顶点),且满足,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设X~N(μ1),Y~N(μ2),这两个正态分布密度曲线如图所示,下列结论中正确的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 对任意正数t,P(X≥t)≥P(Y≥t)

D. 对任意正数t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数.

1)求函数在点处的切线方程;

2)求函数上的最大值;

3)当时,试讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和点,直线与抛物线交于不同两点,直线与抛物线交于另一点.给出以下判断:

①直线与直线的斜率乘积为

轴;

③以为直径的圆与抛物线准线相切.

其中,所有正确判断的序号是(

A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“五四青年节”到来之际,启东中学将开展一系列的读书教育活动.为了解高二学生读书教育情况,决定采用分层抽样的方法从高二年级四个社团中随机抽取12名学生参加问卷调査.已知各社团人数统计如下:

(1)若从参加问卷调查的12名学生中随机抽取2名,求这2名学生来自同一个社团的概率;

(2)在参加问卷调查的12名学生中,从来自三个社团的学生中随机抽取3名,用表示从社团抽得学生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)若函数有极小值,求该极小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

查看答案和解析>>

同步练习册答案