精英家教网 > 高中数学 > 题目详情
已知f(x)=-2x3+6x2+m(m为常数)在[-2,2]上有最小值3,那么此函数在[-2,2]上的最大值为(  )
分析:利用已知函数在[-2,2]上有最小值3,求出常数m的值,即可求出函数的最大值.
解答:解:由已知,f′(x)=-6x2+12x,由-6x2+12x≥0得0≤x≤2,
因此当x∈[0,2]时f(x)为增函数,在x∈[2,+∞),(-∞,0]时f(x)为减函数,
又因为x∈[-2,2],所以得当x∈[-2,0]时f(x)为减函数,在x∈[0,2]时f(x)为增函数,
所以f(x)min(0)=m=3,故有f(x)=-2x3+6x2+3
所以f(-2)=43,f(2)=11
因为f(-2)=-43<f(2)=11,所以函数f(x)的最大值为f(-2)=-43.
故选D.
点评:本题考查导数知识的运用,考查函数的最值,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为(  )
A、
2
B、2
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h(2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)选修4-5:不等式选讲
已知f(x)=|2x-1|+ax-5(a是常数,a∈R)
(Ⅰ)当a=1时求不等式f(x)≥0的解集.
(Ⅱ)如果函数y=f(x)恰有两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3,g(x)=4x-5,则使得f(h(x))=g(x)成立的h(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)已知f(x)=2x+x,则f-1(6)=
2
2

查看答案和解析>>

同步练习册答案