精英家教网 > 高中数学 > 题目详情

【题目】分)已知椭圆的左焦点为,过的直线交于两点.

)求椭圆的离心率.

)当直线轴垂直时,求线段的长.

)设线段的中点为为坐标原点,直线交椭圆交于两点,是否存在直线使得?若存在,求出直线的方程;若不存在,说明理由.

【答案】(1) (2) (3) 存在直线,使得

【解析】

试题分析:(1)将椭圆方程化为标准方程,求得a,b,c,进而得到离心率;(2)当直线l与x轴垂直时,即为x=﹣1,代入椭圆方程,求得纵坐标,进而得到弦长;(3)设直线AB:x=my﹣1,代入椭圆方程,可得(3+2m2)y2﹣4my﹣4=0,运用韦达定理,以及中点坐标公式可得P的坐标,再由向量共线的坐标表示,解方程可得m,进而判断存在这样是直线l.

解析:

)椭圆

即为,可得

故椭圆的离心率

)当直线轴垂直时,即为,代入椭圆方程可得

故线段的长为

)由,设直线,代入椭圆方程得

,则

即有中点的坐标为

直线,代入椭圆方程可得:

可设

假设存在直线使得

即有

,解得

故存在直线,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x+a)lnx,g(x)= ,已知曲线y=f(x)在x=1处的切线过点(2,3).
(1)求实数a的值.
(2)是否存在自然数k,使得函数y=f(x)﹣g(x)在(k,k+1)内存在唯一的零点?如果存在,求出k;如果不存在,请说明理由.
(3)设函数h(x)=min{f(x),g(x)},(其中min{p,q}表示p,q中的较小值),对于实数m,x0∈(0,+∞),使得h(x0)≥m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.

①存在点,使得//平面

②对于任意的点,平面平面

③存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正的等比数列{an}的前n项和为Sn , S4=30,过点P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直线的一个方向向量为(﹣1,﹣1)
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 证明:对于任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆O的内接四边形BCED,BC为圆O的直径,BC=2,延长CB,ED交于A点,使得∠DOB=∠ECA,过A作圆O的切线,切点为P,

(1)求证:BD=DE;
(2)若∠ECA=45°,求AP2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,为椭圆的短轴顶点,且.

(1)求椭圆的方程

(2)过作直线交椭圆于两点,求的面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥B﹣ACDE中,AE⊥平面ABC,CD∥AE,∠ABC=3∠BAC=90°,BF⊥AC于F,AC=4CD=4,AE=3.

(1)求证:BE⊥DF;
(2)求二面角B﹣DE﹣F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们社会责任感与公众意识的不断提高,越来越多的人成为了志愿者.某创业园区对其员工是否为志愿者的情况进行了抽样调查,在随机抽取的10位员工中,有3人是志愿者.
(1)在这10人中随机抽取4人填写调查问卷,求这4人中恰好有1人是志愿者的概率P1
(2)已知该创业园区有1万多名员工,从中随机调查1人是志愿者的概率为 ,那么在该创业园区随机调查4人,求其中恰有1人是志愿者的概率P2
(3)该创业园区的A团队有100位员工,其中有30人是志愿者.若在A团队随机调查4人,则其中恰好有1人是志愿者的概率为P3 . 试根据(Ⅰ)、(Ⅱ)中的P1和P2的值,写出P1 , P2 , P3的大小关系(只写结果,不用说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC所对应的边分别为abc

)若abc成等差数列,证明:sinA+sinC=2sinA+C);

)若abc成等比数列,求cosB的最小值.

查看答案和解析>>

同步练习册答案