分析 利用同角三角函数的基本关系求得 cosα、sin(α+β)的值,可得cosβ=cos[(α+β)-α]的值,再利用二倍角的余弦公式求得 cos2β 的值.
解答 解:α、β都是锐角,且sinα=$\frac{12}{13}$,cos(α+β)=-$\frac{4}{5}$,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{5}{13}$,
sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{3}{5}$,
则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{4}{5}$•$\frac{5}{13}$+$\frac{3}{5}$•$\frac{12}{13}$=$\frac{16}{65}$,
∴cos2β=2cos2β-1=$-\frac{3713}{4225}$,
故答案为:$-\frac{3713}{4225}$.
点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式、二倍角的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {-1,0,1} | B. | {0,1,2} | C. | {1,2} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15$\sqrt{2}$km | B. | 30km | C. | 15km | D. | 15$\sqrt{3}$km |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 钝角三角形 | C. | 等边三角形 | D. | 直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com