精英家教网 > 高中数学 > 题目详情
关于命题p:任意的一个抛物线的离心率都为1,命题q:存在一个离心率为2的双曲线,则下列说法正确的是(  )
分析:先判断命题p与命题q的真假,根据复合命题真值表判断¬p、¬q的真假和(¬p)∨(¬q)的真假,可得答案.
解答:解:由抛物线的离心率为1,知命题p为真命题;
∵双曲线的离心率大于1,∴命题q为真命题,
由复合命题真值表得¬p、¬q都是假命题,
∴(¬p)∨(¬q)为假命题.
故选C.
点评:本题考查了命题的真假判定,复合命题的真假判定;要熟练掌握复合命题真值表.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),点P(m,n)为抛物线上任意一点,其中m≥0.
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•资阳一模)已知函数f(x)=|2x-1|+|x+2|+2x(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:指数函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题
①关于x,y二元一次方程组
mx+y=-1
3mx-my=2m+3
的系数行列式D=0是该方程组有解的必要非充分条件;
②已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的充分不必要条件;
③“a<2”是“对任意的实数x,|x+1|+|x-1|≥a恒成立”的充要条件;
④“p=0或p=4”是“关于x的实系数方程
p
x
=x+p
有且仅有一个实数根”的非充分非必要条件.
其中为真命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省福州市高三上学期期末质量检测文科数学试卷(解析版) 题型:填空题

给出下列命题:

①“x=一1”是“x25x60”的必要不充分条件;

②在△ABC中,已知;

③函数的图象关于点(-1,1)对称;

④若命题p是::对任意的,都有sinx1,为:存在,使得sinx > 1.

其中所有真命题的序号是____

 

查看答案和解析>>

科目:高中数学 来源:2010年江西省吉安市高考数学模拟试卷(解析版) 题型:解答题

已知抛物线y2=2px(p>0),点P(m,n)为抛物线上任意一点,其中m≥0.
(1)判断抛物线与正比例函数的交点个数;
(2)定义:凡是与圆锥曲线有关的圆都称为该圆锥曲线的伴随圆,如抛物线的内切圆就是最常见的一种伴随圆.此外还有以焦点弦为直径的圆,以及以焦点弦为弦且过顶点的圆等.同类的伴随圆构成一个圆系,圆系中有无数多个圆.求证:抛物线内切圆系方程为:(x-p-m)2+y2=p2+2pm(其中m为参数且m≥0);
(3)请研究抛物线以焦点弦为直径的伴随圆,推导出其圆系方程,并写出一个关于它的正确命题.

查看答案和解析>>

同步练习册答案