精英家教网 > 高中数学 > 题目详情

以下函数在[0,数学公式]上单调递增的是


  1. A.
    y=tanx
  2. B.
    y=sinxcosx
  3. C.
    y=sinx
  4. D.
    y=cosx
C
分析:对于A,通过基本函数的定义域,判断正误;
对于B,利用正弦函数的单调性,判断正误;
对于C,直接利用正弦函数的单调增区间判断即可;
对于D,利用余弦函数的基本性质判断即可.
解答:因为y=tanx的定义域中没有,所以A不正确;
因为y=sinxcosx=sin2x,在[0,]上有增有减,所以B不正确;
因为y=sinx在[0,]上单调递增的,满足题意,正确.
因为y=cosx在[0,]上单调递减的,所以D不正确.
故选C.
点评:本题是基础题,考查基本函数的基本性质的应用,注意函数的定义域,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,
π
2
)
上不是凸函数的是(  )
A、f(x)=sinx+cosx
B、f(x)=lnx-2x
C、f(x)=-x3+2x-1
D、f(x)=-xe-x

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=sin2x的图象沿 x轴向左平移
π
6
个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y=f(x)图象,对于函数y=f(x)有以下四个判断:
①该函数的解析式为y=2sin(2x+
π
6
)

②该函数图象关于点(
π
3
,0)
对称; ③该函数在[0,
π
6
]
上是增函数;
④函数y=f(x)+a在[0,
π
2
]
上的最小值为
3
,则a=2
3
.其中,正确判断的序号是(  )
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)利用函数单调性的定义证明函数h(x)=x+
3
x
在[
3
,∞)
上是增函数;
(2)我们可将问题(1)的情况推广到以下一般性的正确结论:已知函数y=x+
t
x
有如下性质:如果常数t>0,那么该函数在(0,
t
]
上是减函数,在[
t
,+∞)
上是增函数.
若已知函数f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性质求出函数f(x)的单调区间;又已知函数g(x)=-x-2a,问是否存在这样的实数a,使得对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,请说明理由;如存在,请求出这样的实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为上凸函数.以下四个函数在(0,
π
2
)
上不是上凸函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以下函数在[0,
π
2
]上单调递增的是(  )

查看答案和解析>>

同步练习册答案