精英家教网 > 高中数学 > 题目详情
14.若P是双曲线x2-y2=λ(λ>0)左支上的一点,F1、F2是左、右两个焦点,若|PF2|=6,PF1与双曲线的实轴垂直,则λ的值是(  )
A.3B.4C.1.5D.1

分析 双曲线x2-y2=λ,即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{λ}=1$,a=b=$\sqrt{λ}$,c=$\sqrt{2λ}$,利用|PF2|=6,PF1与双曲线的实轴垂直,建立方程,即可求出λ的值.

解答 解:双曲线x2-y2=λ,即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{λ}=1$,
∴a=b=$\sqrt{λ}$,c=$\sqrt{2λ}$,
∵|PF2|=6,PF1与双曲线的实轴垂直,
∴36=(6-2$\sqrt{λ}$)2+(2$\sqrt{2λ}$)2,∴λ=4,
故选B.

点评 本题考查双曲线的方程与性质,考查勾股定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.复数$z=\frac{3-i}{1-i}$的共轭复数是2-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=2|x|+x2,若f(a-1)≤3,则a的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点C的轨迹方程为$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点F(-1,0)是椭圆$C:\frac{x^2}{a^2}+{y^2}=1({a>0})$的一个焦点,点M为椭圆C上任意一点,点N(3,2),则|MN|+|MF|取最大值时,直线MN的斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P,Q分别为直线x-y=0和圆(x-8)2+y2=2上的点,则|PQ|的最小值为(  )
A.2$\sqrt{2}$B.3$\sqrt{2}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值为a.
(1)求a;
(2)已知p,q,r是正实数,且满足p+q+r=3a,求p2+q2+r2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C:(x-3)2+(y-4)2=1,点A(-m,0),B(m,0),若圆C上存在点P,使得∠APB=90°,则正数m的最小值与最大值的和为(  )
A.11B.10C.9D.8

查看答案和解析>>

同步练习册答案