精英家教网 > 高中数学 > 题目详情
7.利用二重积分性质,估计二重积分的值:I=$\underset{∬}{D}$xydσ,D={(x,y)|x2+y2≤1,x≥0,y≥0}.

分析 根据二重积分的中值定理,m≤I/σ≤M,其中m和M分别是f(x,y)在D上的最小值和最大值,设x=cosxa,y=sina,利用三角函数的有界性求f(x,y)的最值,从而得到I的范围.

解答 解:因为I=$\underset{∬}{D}$xydσ,D={(x,y)|x2+y2≤1,x≥0,y≥0}.
所以设x=cosa≥0,y=sina≥0,a∈[0,$\frac{π}{2}$],所以xy=$\frac{1}{2}$sin2a,所以其最大值为$\frac{1}{2}$,最小值为0,又S(σ)=π,
所以I=$\underset{∬}{D}$xydσ∈[0,$\frac{π}{2}$].

点评 本题考查了二重积分的中值定理的运用;关键是求出f(x,y)在D上的最小值和最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的图象是连续不断的,现给出x,f(x)的部分对应值如下表:
x-2-1123
f(x)-3-2124
则函数f(x)一定有零点的区间是(  )
A.(1,2)B.(2,3)C.(-2,-1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|lnx|-k有两个不同的零点a,b,则代数式|$\frac{{a}^{2}+{b}^{2}+2}{a-b}$|的最小值是(  )
A.8$\sqrt{2}$B.8C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面上,Rt△ABC有勾股定理(即$∠C=\frac{π}{2}$,则有c2=a2+b2),类比到空间中,已知三棱锥P-DEF中,∠PDF=$∠PDE=∠EDF=\frac{π}{2}$,用S1,S2,S3,S分别表示△PDF,△PDE,△EDF,△PEF的面积,则有结论:S2=S12+S22+S32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\sqrt{3}$cos($\frac{π}{3}$x+$\frac{π}{2}$),若对任意x∈R都有f(x1)≥f(x)≥f(x2)成立,则|x1-x2|的最小值为(  )
A.6B.3C.$\frac{3}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点A(x1,x${\;}_{1}^{2}$),B(x2,x${\;}_{2}^{2}$)是抛物线y=x2上任意不同的两点,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{{x}_{1}^{2}+{x}_{2}^{2}}{2}$>$\frac{({x}_{1}+{x}_{2})^{2}}{2}$2成立,运用类比的方法可知,若点A(x1,sinx1),B(x2,sinx2)是函数y=sinx(x∈(0,π))图象上不同的两点,线段AB总是位于A,B两点之间函数y=sinx(x∈(0,π))图象的下方,则类似地有结论$\frac{sin{x}_{1}+sin{x}_{2}}{2}$<sin$\frac{{x}_{1}+{x}_{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从6件正品与3件次品中任取3件,观察正品件数与次品件数,则下列事件既是互斥事件又是对立事件的是(  )
A.“恰好有1件次品”和“恰好有2件次品”
B.“至少有1件次品”和“全是次品”
C.“至少有1件正品”和“至多有1件次品”
D.“至少有2件次品”和“至多有1件次品”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用数归纳法证明当n为正奇数时,xn+yn能被x+y整除,k∈N*第二步是(  )
A.设n=2k+1时正确,再推n=2k+3正确
B.设n=2k-1时正确,再推n=2k+1时正确
C.设n=k时正确,再推n=k+2时正确
D.设n≤k(k≥1)正确,再推n=k+2时正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(x-1)2(x+a)ex,x=1是f(x)的一个极大值点,求a的取值.

查看答案和解析>>

同步练习册答案