精英家教网 > 高中数学 > 题目详情
(2011•浙江模拟)在△ABC中,角A,B,C所对边分别为a,b,c,且1+
tanA
tanB
=
2c
b

(Ⅰ)求角A;
(Ⅱ)若△ABC是锐角三角形,求sinB+sinC的取值范围.
分析:(Ⅰ) 在△ABC中,由正弦定理可得c=2rsinC,b=2rsinB 代入条件化简可得sin(A+B)=2sinCcosA,求出cosA=
1
2
,从而求得角A.
(Ⅱ)化简sinB+sinC 为
3
sin(C+
π
6
)
,根据角C+
π
6
的范围,结合正弦函数的定义域和值域求出sinB+sinC的取值范围.
解答:解:(Ⅰ) 在△ABC中,由正弦定理可得c=2rsinC,b=2rsinB.
1+
tanA
tanB
=
2c
b
,∴1+
tanA
tanB
=
2sinC
sinB
,化简可得 sin(A+B)=2sinCcosA.
∵A+B=π-C,∴sin(A+B)=sinC≠0,∴cosA=
1
2
,∵0<A<π,∴A=
π
3

(Ⅱ)sinB+sinC=sin(
3
-C)+sinC
=sin
3
cosC-cos
3
sinC+sinC

=
3
2
sinC+
3
2
cosC
=
3
sin(C+
π
6
)

∵锐角三角形,所以,0<C<
π
2
,0<B=
3
-C<
π
2
,∴
π
6
<C<
π
2
π
3
<C+
π
6
3

sin(C+
π
6
)∈(
3
2
,1]
sinB+sinC∈(
3
2
3
]
点评:本题考查正弦定理、两角和差的正弦公式的应用,式子的变形,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知△ABC中,AB=AC=4,BC=4
3
,点D为BC边的中点,点P为BC边所在直线上的一个动点,则
AP
AD
满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)数列{an}满足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知A、B是两个不同的点,m、n是两条不重合的直线,α、β是两个不重合的平面,则①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命题为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)已知点F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是直角三角形,则该双曲线的离心率e为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A,B必须放入相邻的抽屉内,文件C,D也必须放在相邻的抽屉内,则文件放入抽屉内的满足条件的所有不同的方法有(  )

查看答案和解析>>

同步练习册答案