(本小题满分14分)
已知函数.
(Ⅰ)当时,求函数的图象在处的切线方程;
(Ⅱ)判断函数的单调性;
(Ⅲ)若函数在上为增函数,求的取值范围.
(Ⅰ).
(Ⅱ)当时,函数在单调递增;
当时,函数在单调递减,在上单调递增.
(Ⅲ).
【解析】(I)当a=2时,先求出的值,即切线的斜率,然后写出点斜式方程,再化成一般式即可.
(II)先求导,可得,然后再对和a<0两种情况进行讨论研究其单调性.
(III)本小题转化为在上恒成立,也可考虑求出f(x)的增区间D,然后根据求解也可.
(Ⅰ)当时,(),········································· 1分
∴,···································································· 2分
∴ ,所以所求的切线的斜率为3.······················································· 3分
又∵,所以切点为.
故所求的切线方程为:.······································································· 4分
(Ⅱ)∵,
∴······························································· 5分
①当时,∵,∴;····························································· 6分
②当时,
由,得;由,得;·························· 8分
综上,当时,函数在单调递增;
当时,函数在单调递减,在上单调递增.········ 9分
(Ⅲ)①当时,由(Ⅱ)可知,函数在单调递增.此时,,故在上为增函数.······································································································· 11分
②当时,由(Ⅱ)可知,函数在上单调递增.
∵ 在上为增函数,
∴ ,故,解得,
∴ .······························································································ 13分
综上所述,的取值范围为. 14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com