精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
(1)若 ,求证:△ABC为等腰三角形;
(2)若 ,边长c=2,角C= ,求△ABC的面积.

【答案】
(1)证明:∵m∥n

∴asinA=bsinB

即a =b .其中R为△ABC外接圆半径.

∴a=b

∴△ABC为等腰三角形


(2)解:由题意,mp=0

∴a(b﹣2)+b(a﹣2)=0

∴a+b=ab

由余弦定理4=a2+b2﹣2abcos

∴4=a2+b2﹣ab=(a+b)2﹣3ab

∴(ab)2﹣3ab﹣4=0

∴ab=4或ab=﹣1(舍去)

∴SABC= absinC

= ×4×sin =


【解析】(1)利用向量平行的条件,写出向量平行坐标形式的条件,得到关于三角形的边和角之间的关系,利用余弦定理变形得到三角形是等腰三角形.(2)利用向量垂直数量积为零,写出三角形边之间的关系,结合余弦定理得到求三角形面积所需的两边的乘积的值,求出三角形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)设点 在抛物线上,直线 分别与轴交于点 .求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则称点为平面上单调格点:设

求从区域中任取一点,而该点落在区域上的概率;

求从区域中的所有格点中任取一点,而该点是区域上的格点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宝宝的健康成长是妈妈们最关心的问题,父母亲为婴儿选择什么品牌的奶粉一直以来都是育婴中的一个重要话题,为了解过程奶粉的知名度和消费者的信任度,某调查小组特别调查记录了某大型连锁超市2015年与2016年这两年销售量前5名的五个品牌奶粉的销量(单位:罐),绘制如下的管状图:

(1)根据给出的这两年销量的管状图,对该超市这两年品牌奶粉销量的前五强进行排名;

(2)分别计算这5个品牌奶粉2016年所占总销量(仅指这5个品牌奶粉的总销量)的百分比(百分数精确到各位),并将数据填入如下饼状图中的括号内;

(3)已知该超市2014年飞鹤奶粉的销量为(单位:罐),试以这3年的销量得出销量关于年份的线性回归方程,并据此预测2017年该超市飞鹤奶粉的销量.

相关公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)若,设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点,若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与圆 且与椭圆相交于两点.

(1)若直线恰好经过椭圆的左顶点,求弦长

(2)设直线的斜率分别为,判断是否为定值,并说明理由

(3)求,面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为常数.

(1)若是函数的一个极值点,求曲线在点处的切线方程;

(2)若函数有2个零点, 有6个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=﹣2. ①设bn=2nan , 求数列{bn}的前n项和;
②设cn= ,若不等式cn 对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案