精英家教网 > 高中数学 > 题目详情

【题目】已知处的极值为0.

(1)求常数的值;

(2)求的单调区间;

(3)方程在区间上有三个不同的实根时,求实数的范围.

【答案】(1);(2)的递减区间为 的递增区间为;(3)

【解析】试题分析:(1)求出f′(x)=3x2+6ax+b,利用函数的极值点,列出方程组求解即可.(2)求出导函数f′(x)=3x2+12x+9=3(x+3)(x+1),求出极值点,列表判断导函数的符号,推出函数的单调性,求解函数的单调区间.(3)利用函数的极值,求解c的范围即可.

试题解析:

1可得

由题时有极值0,可得: ,即

解得: (舍去)或

(2)当时,

故方程有根

0

0

极大值

极小值

由上表可知: 的递减区间为 的递增区间为

(3)因为

由函数的连续性以及函数的单调性可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为

(Ⅰ)求曲线的参数方程;

(Ⅱ)过原点且关于轴对称的两条直线分别交曲线,且点在第一象限,当四边形的周长最大时,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系.某重点高中数学教师对高三年级的50名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有22人,余下的人中,在高三年级模拟考试中数学平均成绩不足120分钟的占,统计成绩后,得到如下的列联表:

分数大于等于120分钟

分数不足120分

合计

周做题时间不少于15小时

4

22

周做题时间不足15小时

合计

50

(Ⅰ)请完成上面的列联表,并判断能否有99%以上的把握认为“高中生的数学成绩与学生自主学习时间有关”;

(Ⅱ)(ⅰ)按照分层抽样,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是,求的分布列(概率用组合数算式表示);

(ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取人,求这些人中周做题时间不少于15小时的人数的期望和方差.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线是函数图象的一条对称轴.

(1)求的值,并求的解析式;

(2)若关于的方程在区间上有且只有一个实数解,求实数的取值范围;

(3)已知函数的图象是由图象上的所有点的横坐标伸长到原来的2倍,然后再向左平移个单位得到,若 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线及直线外一点.

(1)写出点到直线的距离公式;

(2)利用向量求证点到直线的距离公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数处取得极值,求实数的值;

(2)若函数)在区间上为增函数,求实数的取值范围;

(3)若当时,方程有实数根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,设为曲线在点处的切线,其中.

(Ⅰ)求直线的方程(用表示);

(Ⅱ)求直线轴上的截距的取值范围;

(Ⅲ)设直线分别与曲线和射线)交于 两点,求的最小值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验,甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在区间内(满分100分),并绘制频率分布直方图如图所示,两个班人数均为60人,成绩80分及以上为优良.

(1)根据以上信息填好联表,并判断出有多大的把握认为学生成绩优良与班级有关?

(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.

(以下临界值及公式仅供参考)

.

查看答案和解析>>

同步练习册答案