精英家教网 > 高中数学 > 题目详情

【题目】设函数

)设,讨论函数的单调性.

)设,求证:当时,

【答案】(1)见解析;(2)见解析

【解析】试题分析:求得两种讨论,即可求解函数的单调性;

,由()可知,当时,上单调递增,当时,低调递减,得取得最大值,得到代入得得到即可作出证明.

试题解析:

,且定义域为

时,

上单调递增,

时,,有

,当

在区间上单调递减,在区间上单调递增,

综上,当时,上单调递增,

时,在区间上单调递减,在区间上单调递增.

,由()可知, 上单调递增,

∴存在唯一,使得,且

时,上单调递增,

时,低调递减,

取得最大值,即为在区间的最大值,

代入

在单调递增,

∴当时,有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,记随机变量表示质量在内的芒果个数,求的分布列及数学期望.

(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的圆心到直线的距离;

(2)设圆与直线交于点,若点的坐标为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程是:是参数,是常数).以为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数,),在以坐标原点为极点,轴非负轴为极轴的极坐标系中,曲线(为极角).

(1)将曲线化为极坐标方程,当时,将化为直角坐标方程;

(2)若曲线相交于一点,求点的直角坐标使到定点的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

Ⅰ)求的反函数的图象上点(1,0)处的切线方程;

Ⅱ)证明:曲线与曲线有唯一公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.

(Ⅰ)求该考场考生中语文成绩为一等奖的人数;

(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;

(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线.

(Ⅰ)求曲线C的方程;

(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点OQ的平行线交曲线CM,N两个不同的点, 求△QMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;

(2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.

查看答案和解析>>

同步练习册答案